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Abstract. Dichromats recognize colors using two out of three cone cells;
L, M, and S. To extend the ability of dichromats to recognize the color
difference, we propose a method to expand the color difference when
observed by dichromats. We analyze the color between the neighboring
pixels not in intensity space but chromaticity space and form a Poisson
equation. In addition, we use the sigmoid function to weigh the edge of
a color image. The color difference can be adequately tuned manually by
the weight parameter so that the dichromats can obtain the image that
they want where the visibility of the color is enhanced.

Keywords: color blindness · color vision deficiency · dichromat · recol-
oring · edge exaggeration

1 Introduction

Red, green, and blue colors are detected by three kinds of cone cells embedded
in the retina. Dichromats use two of them to recognize colors. In this paper, we
propose a method to enhance the visibility of dichromats.

Enhancing the visibility of color image for dichromats is an important re-
search field[1, 2, 4, 6–12, 14–17, 19–26, 28–31].

Unlike these methods, our method analyzes not in color space but image
space (i.e., pixel coordinates) (Fig. 1). We formulate the Poisson equation so
that the relative color difference between neighboring pixels will be preserved.
Some methods [5, 18, 27] also solve the Poisson equation to enhance the visibility
of dichromats. These methods [5, 27] form the Poisson equation in RGB intensity
space, while our method forms in xy-chromaticity space. As a result, our method
exaggerates the color difference between neighboring pixels. One of the existing
methods [18] also forms the Poisson equation in xy-choromaticity space, however,
our method can exaggerate the color difference by changing the parameter of the
exaggeration weight.

Section 2 explaines the basic theory, and Section 3 shows our method. We
show some results in Section 4. Section 5 concludes our paper, and we also discuss
the disadvantage of our method.

1 Current address: Hitachi Solutions West Japan, Ltd., Hiroshima, Japan
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Fig. 1. Schematic explanation of color-based approach and pixel-based approach.

2 Hue for dichromats

The color value which dichromats perceive can be calculated as follows. RGB
value is first converted to CIE-XYZ value, and after that, it is converted to LMS
value. LMS represents the sensitivity of cone cells. The procedures to calculate
the LMS values of dichromats are shown in some pieces of literature such as
Judd [13] and Brettel et al. [3]. In this paper, we follow Judd [13]. The conversion
formula for protanopia is shown below. Lp

Mp

Sp

 =

0.0 2.02 −2.52
0.0 1.0 0.0
0.0 0.0 1.0

 L
M
S

 . (1)

And, the conversion formula for deuteranopia is shown below. Ld

Md

Sd

 =

 1.0 0.0 0.0
0.49 0.0 1.25
0.0 0.0 1.0

 L
M
S

 . (2)

In xy-diagram calcualted from CIE-XYZ value, the white color is placed in
(x, y) = (0.33, 0.33) for trichromats. First, the hue α of trichromats is defined
as an angle defined in xy-plane (Fig. 2 (a)). The trichromatic hue α is defined
as an angle around the white point (x, y) = (0.33, 0.33). 0◦ of α is defined, for
example, as the direction of −45◦. The hue angle α of a certain color (x, y) is
calculated as follows.

α =
π

4
+ tan−1 y − 0.33

x− 0.33
. (3)

The hue β of dichromats (Fig. 2 (b)–(c)) has strong relation with the L*a*b*
hue of trichromats [19]. Following Judd [13], the white point of protanopia is
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Fig. 2. Definition of hue of (a) trichromats, (b) protanopia, and (c) deuteranopia.

(x, y) = (0.747, 0.253) and that of deuteranopia is (x, y) = (1.000, 0.000). The
hue β is defined as the angle around these white points, where it ranges from
140◦ direction to 200◦ direction for protanopia and ranges from 140◦ direction
to 170◦ direction for deuteranopia. The hue angle β of protanopia is calculated
as follows.

β =
π

180

(
140 +

α

2π
(200− 140)

)
, (4)

and the hue angle β of deuteranopia is calcuted as follows.

β =
π

180

(
140 +

α

2π
(170− 140)

)
. (5)

Here, the hue angle α ranges from 0 to 360◦. The direction of 0◦ in hue angle
α is casually defined (i.e., 45◦); however, it does not matter for our purpose
as explained mathematically in Sec. 3. Sec. 3 explains that our method uses
the relative value for representing the hue instead of the absolute value. This
is because that the hue of trichromats ranges from 0 to 360◦, but the 360◦ is
cyclically connected to 0, and because that the hue of dichromats ranges in a
limited range.

3 Color enhancement for dichromat

The purpose of the method is to enhance the visibility of the image for dichro-
mats. As shown in Section 2, we represent the color as the hue angle shown in
Fig. 2.

sRGB value of the input image is converted to CIE-XYZ. After that, CIE-
XYZ value is converted to xy-chromaticity as follows.

x̃ =
X̃

X̃ + Ỹ + Z̃
, (6)
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ỹ =
Ỹ

X̃ + Ỹ + Z̃
, (7)

z̃ =
Z̃

X̃ + Ỹ + Z̃
. (8)

The vector from the white point (1/3, 1/3) of xy chromaticity to the chromaticity
of image pixel is represented as Eq. (9).

a(u, v) =

 x̃(u, v)− 0.33
ỹ(u, v)− 0.33

0

 . (9)

Here, we use (u, v) for representing the x and y components of pixel position
represented in Euclidean coordinates with x and y axes.

We deonte the 4-neighbor pixel position as (u+∆v, u+∆v), where the integer
values ∆u and ∆v obey |∆u|+ |∆v| = 1. The color vectors of neighboring pixels
are also calculated as Eq. (10).

ã(u+∆u, v +∆v) =

 x̃(u+∆u, v +∆v)− 0.33
ỹ(u+∆u, v +∆v)− 0.33

0

 . (10)

We normalize these vectors and denote them as â(u, v) and â(u+∆u, v+∆v)
(Fig. 3). We denote the cross product of these two vectors as a.

a(u+∆u, v +∆v) = â(u+∆u, v +∆v)× â(u, v) . (11)

Calculating the arcsine of a results in the signed angle between â(u+∆u, v+∆v)
and â(u, v). We denote this angle as ∆α(u+∆u, v +∆v) (Fig. 4).

∆α(u+∆u, v +∆v) = sin−1(a(u+∆u, v +∆v)) . (12)

The discretized representation of the Laplacian of the hue angle β̃ for dichro-
mats is as follows.

△β̃(u, v) = −
{
β̃(u, v)

−1

4
β̃(u− 1, v)− 1

4
β̃(u+ 1, v)− 1

4
β̃(u, v − 1)− 1

4
β̃(u, v + 1)

}
. (13)

Same goes to α.

△α(u, v) = −
{
α(u, v)

−1

4
α(u− 1, v)− 1

4
α(u+ 1, v)− 1

4
α(u, v − 1)− 1

4
α(u, v + 1)

}
. (14)

Eq. (14) is also represented as follows.

△α(u, v) = −
{1

4
(α(u, v)− α(u− 1, v)) +

1

4
(α(u, v)− α(u+ 1, v))

+
1

4
(α(u, v)− α(u, v − 1)) +

1

4
(α(u, v)− α(u, v + 1))

}
. (15)
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Fig. 3. Chromaticitiy vector.

Fig. 4. Relative hue angle between two neighboring pixels.

If we simply subtract two angles, the calculation will fail since the angle has
a cycle of 360◦. For example, 5◦ minus 355◦ should be 10◦, not −350◦. If we
convert an angle to a vector and calculate the angle between two vectors, this
problem will not occur. Unlike dot product of two vectors, cross product of two
vectors can calculate the angle with signed value. Using Eq. (11), Eq. (15) can
be rewritten as follows.

△α(u, v) =

−
{1

4
∆α̃(u− 1, v) +

1

4
∆α̃(u+ 1, v) +

1

4
∆α̃(u, v − 1) +

1

4
∆α̃(u, v + 1)

}
.(16)

The difference of hue angle β̃ between neighboring pixels should be propor-
tional to the difference of hue angle α between neighboring pixels. Namely, the
Laplacian of β̃ should be the same as the Laplacian of α (Fig. 5), scaled with a
certain constant value.

△β̃(u, v) = △α(u, v) . (17)
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Fig. 5. Color difference between neighboring pixels.

Fig. 6. Specific example of absolute and relative hue angles.

This type of formula is called Poisson equation. From Eq. (13) and Eq. (16),
Eq. (17) is represented as follows.

β̃(u, v)− 1

4
β̃(u− 1, v)− 1

4
β̃(u+ 1, v)

−1

4
β̃(u, v − 1)− 1

4
β̃(u, v + 1) =

1

4
∆α̃(u− 1, v) +

1

4
∆α̃(u+ 1, v) +

1

4
∆α̃(u, v − 1) +

1

4
∆α̃(u, v + 1) . (18)

The angle β̃ between neighboring pixels will become the same as the angle α
between neighboring pixels if we solve Eq. (18). Although β̃ becomes similar
to α, the calculated β̃ becomes free from the cycle of 360◦. Unlike an identity
equation β̃ = α which copies the absolute angle, Eq. (17) preserves the relative
angle among neighboring pixels.

Suppose that the image is consisted of three pixels, and has hue angles α
which are 300◦, 350◦, and 40◦ (Fig. 6). The colors for trichromats will be blue,
purple, and red. If we simply map these angles to the angle β̃, the color for
dichromats becomes faint blue, deep blue, and yellow. However, if we solve the
abovementioned Poisson equation, the calculated angle will be 300◦, 350◦, and
400◦. If we map these angles to the angle β̃, for example, to 150◦, 160◦, and
170◦, the color for dichromats becomes faintly yellow color, faintly cyan color,
and faintly blue color. The color difference between neighboring pixels will be
preserved if we solve the Poisson equation.
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Fig. 7. Sigmoid function.

Unlike existing method [18], our method weights the color difference ∆α̃ of
4-neighbor using the sigmoid function (Fig. 7) subtracted by 0.5 (Eq. (19)).

f(x) =
1

1 + exp (−ax)
− 1

2
. (19)

The real number a is called gain. Sigmoid function (0 < y < 1) (Fig. 7) is a
monotonically increasing function which is symmetric at the point (0, 0.5). The
sigmoid function becomes sharp if the gain is large, and becomes smooth if that
is small. Therefore, the gain can adjust the color exaggeration.

The sigmoid function f(∆α̃(u + ∆u, v + ∆v)) when the gain is a and the
color difference is ∆α̃(u+∆u, v +∆v) is shown in Eq. (20).

f(∆α̃(u+∆u, v +∆v)) =
1

1 + exp (−a∆α̃(u+∆u, v +∆v))
− 1

2
. (20)

The Poisson equation (Eq. (18)) considering the sigmoid function becomes
Eq. (21).

β̃(x, y)− 1
4 β̃(u, v − 1)− 1

4 β̃(u− 1, v)− 1
4 β̃(u+ 1, v)− 1

4 β̃(u, v + 1)

= 1
4f(∆α̃(u, v − 1)) + 1

4f(∆α̃(u− 1, v))

+ 1
4f(∆α̃(u+ 1, v)) + 1

4f(∆α̃(u, v + 1)) . (21)

The closed-form solution to β̃ (Eq. (21)) can be obtained using the LU de-
composition implemented in sparse matrix library.

The followings explain the process to reconvert the angle β̃ to an RGB image.
We create the cumulative histogram of β̃. Using this cumulative histogram,

we converted the angle β̃ to the angle β̂ (Fig. 8). The distance from the white
point of protanopia is denoted as p and that from the white point of deuteranopia
is denoted as d in Eqs. (22)–(23).

xp(u, v) = p cos β̂ + 0.747 ,

yp(u, v) = p sin β̂ + 0.278 ,

zp(u, v) = 1.0− xp(u, v)− yp(u, v) . (22)
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Fig. 8. Histogram equalization of dichromatic hue.

xd(u, v) = d cos β̂ + 1.000 ,

yd(u, v) = d sin β̂ + 0.000 ,

zd(u, v) = 1.0− xd(u, v)− yd(u, v) . (23)

We set p and d as follows. We denote the original xy-chromaticities of the in-
terest pixel as x(u, v) and y(u, v), and the post-processed xy-chromaticities as
x(u, v) and y(u, v). The following t minimizes the difference between the input
chromaticity and the output chromaticity.(

x(u, v)
y(u, v)

)
=

(
Cx

Cy

)
+

(
cos β̂(u, v)

sin β̂(u, v)

)
t . (24)

Therefore, the following is derived by solving Eq. (24).

t = (x− Cx) cos β̂ + (y − Cy) sin β̂ . (25)

Note that, the white point of protanopia is defined as (Cx, Cy) = (0.747, 0.278),
and the white point of deuteranopia is defined as (Cx, Cy) = (1.000, 0.000). From
estimated t, Eq. (22), and Eq. (23), the final values of x, y, z are determined. This
process is schematically depicted in Fig. 9.

At the beginning of our method, we convert the RGB of input image to
XYZ, and calculate W (u, v) = X(u, v)+Y (u, v)+Z(u, v). Eq. (26) converts the
chromaticities x(u, v), y(u, v), and z(u, v) calculated from the hue β to the XYZ
values X, Y , and Z.

X(u, v) = x(u, v)W (u, v) ,

Y (u, v) = y(u, v)W (u, v) ,

Z(u, v) = z(u, v)W (u, v) . (26)
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Fig. 9. Post-processing for protanopia.

Input image Protanopia’s apperance Our result

Fig. 10. Our result (protanopia) [symbolic illustration].

XYZ values are obtained now, and we convert it to the dichromats’ view and
convert its XYZ to RGB.

4 Experiment

Fig. 10 shows one example of the result. The result of our method can represent
the symbolic structure rather than the appearance of protanopia.

The dichromat’s appearance of Fig. 11 (a) is shown in Fig. 11 (b)–(c). Note
that some of the patches are indistinguishable. The output image of the gain
a = 0.1 is shown in Fig. 11 (d)–(e), that of the gain a = 5 is shown in Fig. 11
(f)–(g), and that of the gain a = 100 is shown in Fig. 11 (h)–(i). Fig. 11 (d)–(i)
show that the gain can adjust the amount of exaggeration of the color difference
thanks to the characteristics of the sigmoid function.

The dichromat’s appearance of Fig. 12 (a) is shown in Fig. 12 (b)–(c). The
output image without gain is shown in Fig. 12 (d)–(e), that of the gain a = 0.1
is shown in Fig. 12 (f)–(g), that of the gain a = 5 is shown in Fig. 12 (h)–(i), and
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(a)

(b) (c)

(d) (e)

(f) (g)

(h) (i)
Protanopia appearance Deuteranopia appearance

Fig. 11. Result [color patch]: (a) input, (b) perceived color of protanopia, (c) per-
ceived color of deuteranopia, (d) our result of gain 0.1 (protanopia), (e) our result of
gain 0.1 (deuteranopia), (f) our result of gain 5 (protanopia), (g) our result of gain 5
(deuteranopia), (h) our result of gain 100 (protanopia), and (i) our result of gain 100
(deuteranopia).
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that of the gain a = 100 is shown in Fig. 12 (j)–(k). Our method can distinguish
red and green leaves.

The dichromat’s appearance of Fig. 13 (a) is shown in Fig. 13 (b)–(c). The
output image without gain is shown in Fig. 13 (d)–(e), that of the gain a = 0.1
is shown in Fig. 13 (f)–(g), that of the gain a = 5 is shown in Fig. 13 (h)–(i),
and that of the gain a = 100 is shown in Fig. 13 (j)–(k). If we set the gain
small, the original appearance is preserved, while if we set the gain large, the
color differences become large. This result empirically proves the benefit of our
method compared to the methods without gain (such as Miyazaki’s method [18]).
Miyazaki’s method does not weigh by sigmoid function, while we can exaggerate
the color difference by sigmoid function.

Other results are shown in Fig. 14.
The adequate amount of color exaggeration depends on the user, the sit-

uation, and the purpose. Strong exaggeration is favored in some cases, while
slight exaggeration (with naturalness preserved) is favored in other cases. As a
result, the proposed method is beneficial for actual purposes, which can tune the
amount of color exaggeration.

As shown in our experiments, our method successfully works for both ar-
tificial images and natural images. Our method is not sensitive to the image
types, whether it is an artificial image or a natural image. However, our method
is sensitive to achromatic pixels. Our method exaggerates the color difference
between neighboring pixels. Therefore, if the neighboring pixel is black, gray, or
white, we cannot represent the color difference between neighboring pixels, and
thus, the result images might not have satisfactory color representation.

5 Conclusion

In this paper, we have proposed a method that enhances the visibility of dichro-
mats. Our method converts the color of an image so that the image will be
clear for dichromats. We have formulated the color difference of trichromat as a
Poisson equation and solved it to preserve the color difference which can also be
perceived by dichromats. The Poisson equation formulated in chromaticity space
exaggerates the color difference of neighboring pixels, and at the same time, it
preserves the chromaticity difference of trichromats. Experimental results show
that our method is robust and beneficial. Also, our result has shown that the
exaggeration of the color difference for dichromats can be tuned by the weight-
ing parameter. The disadvantage of our method is that it cannot be applied to
the achromatic images (black, gray, and white). Some kind of preprocessing or
postprocessing may avoid such a problem, however, such processes do not funda-
mentally solve the problem. We are planning to theoretically solve this problem
in the future.
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(b) (c)

(d) (e)
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