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Figure 1. Wavelet-Texture method.

Abstract

In order to create a photorealistic Virtual Reality model,
we have to record the appearance of the object from dif-
ferent directions under different illuminations. In this pa-
per, we propose a method that renders photorealistic images
from a small amount of data. First, we separate the images
of the object into a diffuse reflection component and a spec-
ular reflection component by using linear polarizers. Then,
we estimate the parameters of the reflection model for each
component. Finally, we compress the difference between
the input images and the rendered images by using wavelet
transform. At the rendering stage, we first calculate the dif-
fuse and specular reflection images from the reflection pa-
rameters, then add the difference decompressed by inverse
wavelet transform into the calculated reflection images, and
finally obtain the photorealistic image of the object.

1. Introduction

Rendering of photorealistic 3D images is widely used
today in medical, educational, entertainment, arts, and dig-
ital archive fields. In these circumstances, we propose a
compression technique for brightness information that re-
constructs the appearance of the object and renders photo-
realistic 3D images with improved clarity.

Image-based rendering is a powerful tool for represent-
ing the appearance of the object [1–6]. Most of the meth-
ods cited do not use geometrical information of the object,
but we prefer to use geometrical information of the object

since there is a wide application field for this method. By
using the geometrical model, we can detect the collision be-
tween multiple objects, and we can calculate shadows cast
between them.

A virtual object image in an arbitrary environment can be
obtained from geometrical information and the mathemati-
cal reflection model. We categorize the methods for doing
this as model-based texture methods [7–10, 12–18]. How-
ever, model-based texture methods have a problem in that
there is a limitation on the object types that can apply the
parametric reflection model.

Another approach to render a scene by using geometri-
cal information is based on real images, and we categorize
these methods as image-based texture methods. For exam-
ple, Marschner et al. [19] rendered the images of an object
by retrieving the appearance from a database that is con-
structed from real images of the object taken under different
illumination and from different viewpoints. Image-based
texture methods have an advantage in that they can be ap-
plied to any type of object, regardless of the object’s reflec-
tion property. However, image-based methods need a huge
database of real images. Wood et al. [20] compressed the
appearance obtained by multiple images taken from multi-
ple views by using principal function analysis. The Eigen-
texture method proposed by Nishino et al. [21] reduces the
data by using principal component analysis (PCA) for each
face on a 3D geometric model of input images. Furukawa
et al. [22] compressed the image database for each face of
the geometric model with tensor product expansion. The
tensor-texture method proposed by Vasilescu et al. [23] ren-
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Table 1. Comparison between other methods.
Representation Diffuse Specular

Wood et al. [20] Principal function analysis
Nishino et al. [21] (Eigen Texture) PCA
Furukawa et al. [22] Tensor product expansion
Vasilescu & Terzopoulos [23] (Tensor Texture) N-mode SVD
Wang et al. [24] Out-of-core tensor approximation
Magnor et al. [26] Wavelet transform
Ju et al. [11] PCA Lambertian Phong
Ma et al. [25] Laplace transform Lambertian Phong
Our method (Wavelet Texture) Wavelet transform Lambertian Torrance-Sparrow

ders the image by applying N-mode singular value decom-
position to the image database. Wang et al. [24] used out-
of-core tensor approximation instead of N-mode singular
value decomposition. Ma et al. [25] expressed the image
database by a Laplacian pyramid for each face. Magnor et
al. [26] compressed the textures with wavelet transform. Ju
et al. [11] compressed the residuals between the input image
and the rendered image with PCA.

Table 1 lists the features of each method. PCA, tensor
product expansion, N-mode singular value decomposition,
and out-of-core tensor approximation also preserve the ba-
sis function. More data size is needed to preserve the ba-
sis function as well as the coefficients of the basis func-
tion, which results in a larger data size than the data size of
the method which only preserve the coefficients. The ba-
sis functions of Laplacian transform and wavelet transform
are exponential function and wavelet function, respectively.
Since the basis functions are known for these techniques,
we only have to preserve the coefficients. Wavelet trans-
form is more useful than Laplacian transform for image
compression and is commonly used in recent research, such
as image-based lighting [27, 28] or image-based render-
ing [29–31]. Wavelet basis (used in JPEG 2000) produces
better results than the Fourier basis (used in JPEG1) [33].
Wavelet-like basis produced by sparse coding [32] more ef-
fectively compresses a natural image than the Fourier-like
basis produced by PCA. JPEG 2000 uses both the Le Gall
wavelet and the Daubechies wavelet, and the Daubechies
wavelet can more effectively compress the images than the
Le Gall wavelet [33].

The goal of our method is to compress the data in order
to render photorealistic images. Fig. 1 describes the flow
of our proposed algorithm. First, we obtain the geometri-
cal data of the target object by using a laser range sensor.
Second, we rotate the object and observe the object from
many directions. Next, we obtain the correspondence be-
tween the image and the geometrical data. Then, we sep-
arate the specular reflection component and the diffuse re-
flection component using a linear polarizer [7, 9, 13]. After

1Actually, JPEG uses the basis of discrete cosine transform.

that, we estimate the parameters of the reflection model for
each reflection component. Our proposed method uses the
Torrance-Sparrow model for specular reflection, which is
much more photorealistic than the Phong model. However,
a reflection model is a simplified expression of a real re-
flection; thus, it cannot always express the exact reflection.
Therefore, we enhance the rendering precision by saving the
component that cannot be expressed by reflection models.
We compress this component by discrete wavelet transform
to reduce the data size. We call our proposed method the
“wavelet-texture method.” Eigen-texture method can only
compress in one dimension; however, can compress the data
in three or more dimensions.

We describe the key idea of our proposed method based
on wavelet compression in Section 2 and explain the detail
framework in Section 3. We provide some experimental re-
sults in Section 4 and conclude this paper in Section 5.

2. Wavelet-Texture Method

By taking the images of the object from many viewpoints
and under many lightings, we can sample the BRDF (bidi-
rectional reflectance distribution function) of the object’s
surface. Image-based texture methods render the images
by using the sampled BRDF or the compressed data repre-
senting it. Model-based texture methods approximate the
sampled BRDF by a parameterized BRDF. Since the reflec-
tion model used for model-based texture methods is just an
approximation, there is a difference between the real image
and the image rendered by the reflection model. In addi-
tion to such photometric reasons, geometric factors such as
the precision of the geometric data and the precision of the
camera calibration also cause some types of noise. Our ap-
proach is to render the image by also saving the information
that cannot be expressed by the reflection model, which is
the difference image between the input image and the image
rendered by the reflection model.

However, such multiple difference images have redun-
dant information; thus, we compress the data. Since the
difference images have less information about the appear-
ance than the sampled BRDF, it is more effective to com-
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Figure 2. Calculating the difference for the faces of each triangle:
(a) Input diffuse image, (b) calculated diffuse image by reflection
model, (c) difference image of diffuse component. In (c), the neg-
ative value is expressed as its absolute value for visibility. “(×n)”
indicates that the intensity is multiplied by n to improve visualiza-
tion for the reader.

press the difference images than the sampled BRDF itself,
in order to reduce the data size while still preserving the
photorealistic appearance. We compress the sequence of
difference images with n-D discrete wavelet transform [34].
There are many kinds of wavelets, such as the Haar wavelet,
the Gabor wavelet, and the Daubechies wavelet. How-
ever, the Daubechies wavelet has a higher performance in
image compression than the Haar wavelet [27], and the
Daubechies wavelet is more adequate for image compres-
sion than the Gabor wavelet2; thus, we use the Daubechies
N=2 wavelet in this paper.

Suppose that the geometric data and the photometric data
are already calibrated in the same position. We represent
the geometric data with 3D triangular meshes. First, we ex-
tract the input image for each triangular mesh (Fig. 2(a)).
Next, we estimate the parameters of the reflection models
we used to approximate the obtained BRDF. The parame-
terized BRDF we use are described in Section 3. Then, we
render the image using the estimated reflection parameters,
under the same condition as the input image. This rendered
image is also extracted for each triangular mesh (Fig. 2(b)).
The difference image is the difference between these images
(Fig. 2(c)). For the time being, suppose that we rotate the
object in one dimension, t-axis; thus, the whole difference
image data are three-dimensional data, Iresidual(x, y, t).

Iresidual(x, y, t) = I(x, y, t) −BRDF (x, y, t) , (1)

where I represents the input image and BRDF represents
the mathematical reflection model. Finally, we compress
Iresidual by using the wavelet [35].

2The Gabor wavelet is not orthogonal [34]; thus, it cannot be applied
for multi-resolution representation.
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Figure 3. Data-capturing system.
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Figure 4. Result of reflection component separation: (a) Ordinary
image, (b) diffuse component image, (c) specular component im-
age.

3. Proposed System

3.1. Modeling Stage

In our experiment, we use the acquisition system shown
in Fig. 3. We set the target object on a rotary table and ob-
tained the range images and the color images while rotating
the rotary table in a constant interval. Each range image ob-
tained by the laser range sensor is registered by alignment
software [36], and integrated into a unified mesh model by
merging software [37]. Also, by using the camera calibra-
tion method [38], we obtain the correspondence between
the 3D mesh model and the 2D color image. To differentiate
diffuse reflection from specular reflection, we set linear po-
larizers in front of the camera and the light source (Fig. 3).
Fig. 4 represents the diffuse reflection component and the
specular reflection component separated by polarizers.

We use the Lambertian model for the diffuse reflection
model and the Torrance-Sparrow model [39] for the specu-
lar reflection model.

Ireflect = Id,reflect + Is,reflect (2)

Id,reflect = BRDF L (3)

Is,reflect = BRDF TS . (4)

We estimate the parameters of the Lambertian model
BRDFL and the Torrance-Sparrow model BRDF TS from
the component images. The diffuse reflection parameters
are estimated for each pixel of the upper left half of the im-
age whose size is m × m, which can be mapped onto each
triangle’s faces of the 3D mesh model (Fig. 2). In the ex-
periments shown in this paper, we use the size 16 × 16 for
this albedo map for each triangle’s faces. We use the same
specular reflection parameters for all the surface points to
reduce the data size for storing them, and to robustly esti-



mate the parameters. If we use the same specular reflection
parameters, the image can be easily calculated by using the
environmental mapping technique with a Gaussian-blurred
environment; however, we have not implemented such real-
time rendering software. This paper proposes the basic idea
for BRDF compression, and does not deal with the compu-
tation speed of the rendering.

Next, we calculate the sequence of the difference images,
Iresidual.

I{d,s},residual(x, y, t)
= I{d,s},input(x, y, t) − BRDF {L,TS}(x, y, t) . (5)

Finally, we compress the sequence of difference images for
each component with the Daubechies wavelet.

3.2. Rendering Stage

Any discretized illumination distribution can be ex-
pressed by a set of point light sources Lj (which include
both its intensity and its size). We assume that the point
light source L (which includes both the intensity and the
size) that is used for obtaining input images is known. As
for the rendering by reflection model, we can generate the
appearance under arbitrary illumination distribution by us-
ing the following calculation:

Îreflect = Îd,reflect + Îs,reflect (6)

Îd,reflect =
∑

j

Lj

L
BRDFL(j) (7)

Îs,reflect =
∑

j

Lj

L
BRDFTS(j) . (8)

We obtain the difference images, Îd,residual and
Îs,residual, computed from the compressed difference im-
ages by using the inverse wavelet transform. The difference
image Îresidual needed for the rendering will be the follow-
ing:

Îresidual =
∑

j

Lj

L

(
Îd,residual,j + Îs,residual,j

)
. (9)

The final rendering image Î can be calculated from the
formula shown below, if the input image is obtained from
the viewpoint and with the light source that is the same as
the viewpoint and illumination used in the rendering.

Î = Îreflect + Îresidual . (10)

As for rendering an arbitrary scene, we use the nearest
data in this paper for Îresidual, and we calculate Îreflect ex-
actly for the required scene. The problem of choosing the
nearest data is inconspicuous, thanks to the smallness of the
difference information; however, it is better to use more effi-
cient interpolation for rendering an arbitrary scene. Another
solution is to densely sample the data, and both are still re-
maining as possible solutions in our next implementation.

(a)
Frequency

Amplitude

Frequency Frequency
(b) (c)

Figure 5. Frequency analysis: (horizontal axis) frequency, (vertical
axis) amplitude; (a) input diffuse reflection image, (b) rendered
image by diffuse reflection model, (c) difference diffuse reflection
image.

In our experiment, we fix the light source, and change the
viewpoint in one dimension. We have to capture the images
by rotating the light source and the viewpoint in all direc-
tions, and this is important future work. Note that it is easy
to extend the 3D wavelet to a 4D wavelet, a 5D wavelet, or
a 6D wavelet.

4. Evaluation

In this paper, we represent the quality of the image by
PSNR (peak signal-to-noise ratio). The unit of PSNR is
dB (decibel), and it has a large value if the image quality
is high; it is said that the image is indistinguishable from
the original if the PSNR is more than 40dB, and the image
is totally dissimilar to the original if the PSNR is less than
20dB.

4.1. Comparison to the Fourier Transform

Fig. 5(c) shows the spectral power of the difference im-
ages, Iresidual, calculated by Fourier transform. The spec-
trals of input images Iinput and rendered images by re-
flection parameters Ireflect are also shown in Fig. 5(a) and
Fig. 5(b), respectively. The low frequency component of
the difference image (Fig. 5(c)) is smaller than that in
Fig. 5(a)(b); however, this low frequency component is
higher than the high frequency component. The difference
image (Fig. 5(c)) has a similar amount of high frequency
component as the input image (Fig. 5(a)). Fourier trans-
form is not adequate because it eliminates the high fre-
quency component for compression. However, the com-
pression by wavelet transform can preserve both the high
frequency component and the low frequency component.

4.2. Comparison to the Model-Based Texture
Method

We rotated the object shown in Fig. 6(a) in 36 directions
with 10◦ interval. Fig. 6(b) represents the rendered result
using the estimated diffuse reflection parameters, specular
reflection parameters, and geometrical model. The PSNR of
the image produced by the model-based texture method was
less than 30dB. On the other hand, the result of our wavelet-



texture method can render the information that cannot be
reconstructed from the reflection model only (Fig. 6(c)).
Fig. 6(d) is the plot of the intensity of the points indicated by
the horizontal line in Fig. 6(a)–(c). The intensity of specu-
lar reflection varies dramatically; thus, the estimation of the
specular reflection parameters tends to be affected by some
noises caused by the geometrical model, camera calibra-
tion, object surface, and so on. Therefore, the model-based
texture method struggles to reproduce specular reflection.
However, our method succeeds in producing an image that
is close to the input image.

4.3. Comparison to the Image-Based Texture
Method

Image-based texture methods do not use the reflec-
tion model, and they directly compress the image data.
Fig. 7(b)(c) are the result of the image-based texture method
(compression ratio 42:1), and Fig. 7(d)(e) are the result
of the wavelet-texture method (compression ratio 42:1).
Fig. 7(a) is an input image for comparison. The image-
based texture method we used here does not separate the
reflection components, does not use reflection models, and
compresses only by wavelet. Fig. 7(b)(d) are the render-
ing results, and Fig. 7(c)(e) are the errors between the ren-
dered image and the input image. The PSNR of the wavelet-
texture method was 48dB, and the PSNR of the image-based
texture method was 47dB; thus, the image quality of the
proposed method was higher than that of the image-based
texture method. Also, there is a noise at the boundary of
each face of geometrical data when processed by the image-
based texture method compared to the proposed method.

4.4. Comparison to the Motion JPEG 2000 Method

The sequence of 2D images is treated as 3D data in
this experiment, and our method compresses them by a 3D
Daubechies wavelet. Another way to compress the image
sequence is to compress each 2D images one by one with a
2D Daubechies wavelet. In this section, we temporarily call
this the motion JPEG 2000 method, and compare it with our
method. This motion JPEG 2000 method is implemented
not to use reflection models; thus, for fair comparison, we
do not compare it with the proposed method but compare it
with the image-based texture method described in Section
4.3.

The result is shown in Fig. 8. Fig. 8(a) is an input im-
age. Fig. 8(b) is the result of the motion JPEG 2000 method
(compression ratio 48:1), and Fig. 8(c) is the result of the
image-based texture method (compression ratio 48:1). The
image quality of the image-based texture method, whose
PSNR is 43dB, is higher than that of the motion JPEG 2000
method, whose PSNR is 27dB. Section 4.3 indicates that
the image quality of the proposed method is higher than the
image-based texture method; thus, the proposed method is

0

Input data Model-based texture

PSNR

Compression ratio
200:1 400:1
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Figure 10. The relationship between the PSNR of the rendering
image and the compression ratio. In this paper, we use only the
difference images to evaluate the compression ratio, and the re-
flection parameters are not used to calculate it.

superior to the motion JPEG 2000 method. If the image
sequence is compressed as 3D data, the compression effec-
tiveness is good because of the information of the neighbor-
ing image. However, if the images are compressed one by
one, the compression effectiveness is degraded.

4.5. Comparison between Different Compression
Ratios

In this section, we compressed twelve images down-
loaded from Photex Photometric Image Database [40].
The target object has an anisotropic surface, which can-
not be represented by the model-based texture method
(Fig. 9(a)(f)). In order to analyze the effectiveness of the
wavelet transform to the anisotropic surface, we set the geo-
metrical shape of the target object as a completely flat plane.
Fig. 9(b)(g), Fig. 9(c)(h), and Fig. 9(d)(i) are the results of
our method where the compression ratio is 73:1, 5.8:1, and
1.2:1, respectively.

Fig. 10 and Table 2 show the relationship between the
PSNR of the rendering image and the compression ratio.
The image quality becomes higher than 40dB when the
compression ratio is smaller than 4:1. On the other hand, the
image quality is less than 20dB for the model-based texture
method.

5. Conclusion

We proposed a novel framework for rendering photore-
alistic images of real objects with a small amount of data.
By using the Daubechies wavelet, we compressed the dif-
ference image between the input image and the image ren-
dered by the Lambertian model and the Torrance-Sparrow
model. The proposed method is able to represent the cor-
rect surface reflection, which is important for photorealism,
and is able to effectively compress large amounts of data.
We have to improve the detail of the implementation and
provide deeper evaluation in the future. We are now plan-
ning to sample the images by rotating the viewpoint and the
light source in all directions in order to generate an arbitrary
scene. Also, we are planning to increase the image quality
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Figure 6. Comparison between Model-Based Texture method and Wavelet Texture method: (a) Input image, (b) result of Model-Based
Texture method, (c) result of Wavelet Texture method (compression ratio 28:1), (d) (horizontal axis) pixel position, (vertical axis) intensity;
(solid line)=(a), (dashed line)=(b), (dotted line)=(c).
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Figure 7. Comparison between image-based texture method and wavelet-texture method: (a) Input image, (b)(c) result of image-based
texture method (compression ratio 42:1), (d)(e) result of wavelet-texture method (compression ratio 42:1), (b)(d) rendered result, (c)(e)
difference between rendered image and input image.

by either densely sampling the data or effectively interpolat-
ing the data. The algorithm can represent the interreflection
and self-shadow of the object by difference image, and we
are planning to verify this prospect.

Our method, which used the Lambertian model, the
Torrance-Sparrow model, and the Daubechies wavelet, pro-
duced better results than previous methods in this experi-
ment. Recently, more effective reflection models, such as
the Lafortune model or the He-Torrance-Sillion-Greenberg
model, and more effective wavelets, such as the Coiflet or
the Symmlet, are proposed year by year. The proposed
framework has a flexibility to easily upgrade the method
by only substituting the compression software.
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