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ABSTRACT

In the �eld of computer vision� many methods which measure the surface shape of

opaque objects have been proposed� however� a successful method which measures the

surface shape of transparent objects such as glasses has never been developed� In this

paper� we propose a convenient and bene�cial method to measure the surface shape

of transparent objects�

The light which is re�ected from the surface of the object is partially polarized�

The degree of polarization depends upon the incident angle which� in turn� depends

upon the surface normal of the object� thus� we can obtain the surface normal of the

object by observing the degree of polarization� But unfortunately� the correspondence

between the degree of polarization and the surface normal is not � to �� thus� to obtain

the correct surface normal� we had to solve this ambiguity problem� To disambiguate

this problem� we took two approaches� One was to use the phenomenon of thermal

radiation� the other was to use the di�erential�geometrical characteristics of the object

surface�

The light emitted from the object caused by heating up the object is called thermal

radiation� Because thermal radiation is also a light� it partially polarizes when emitted

from the object� We heated up the object� and we succeeded in solving the ambiguity

problem by observing the degree of polarization of the radiated infrared light�

We also developed a method for using the di�erential�geometrical property of the

object surface� This method solves the ambiguity by comparing two types of data� one

of which is obtained straightforwardly observing the object� while the other is obtained

by observing the object while it is inclined at a slight angle� In this method� we have to

compare these two data at identical points on the object surface� We �nd two identical

points by considering the invariant value on the object surface� and we compare the

data of polarization at these two points� We discuss the relationship between the

geometrical property on object surface and the degree of polarization based on the

knowledge of di�erential geometry� and we propose a method for matching two pieces

of polarization data at identical points on the object surface�

In this paper� we describe how we applied both the method using thermal radiation

and the method using geometrical property to real transparent objects in order to

obtain the correct surface normal of transparent objects�
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Chapter �

Introduction

Recently� techniques for modeling objects through observation have been extensively

investigated� Such modeling has a wide area of applications� including virtual reality

and object recognition� Geometry� one of the most important aspects of modeling� can

be used to create a model based on measuring the shape of an object�

Many techniques to measure object shape have been developed in the �eld of

optical engineering� These techniques can be classi�ed into two categories� point and

surface types� A point type method� such as a laser range sensor� measures object

shape by projecting a spotlight� often a laser beam� over the object surface� and by

measuring the returned timing of the returned direction� A surface method� such as

Moire topography� determines the shape of an object by projecting a planar light and

measuring the interference of the light with the surface�

The computer vision community has extensively developed additional techniques�

Shape�from�shading� for example� analyzes shading information in an image with a

re�ectance map in order to relate image brightness to surface orientations� Photo�

metric stereo obtains information from three images� taken from the same position�

under three di�erent illumination conditions� Binocular stereo and motion analysis

use image di�erences in a series of images taken from di�erent positions�

Most of these methods are� however� designed to obtain the shape of opaque sur�

faces� Namely� these techniques are based on analysis of the body re�ection component

of an object surface� Models of transparent objects� which have only surface re�ection�

cannot be created using these techniques� Few extant methods attempt to determine

object shapes through surface re�ection�

With regard to surface re�ection� Ikeuchi ��� proposed to determine the re�ectance

of a metal surface using photometric stereo� When exposed to three extended light
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sources� a metal surface generates di�erent illumination distributions over the surface�

The application of the photometric stereo method to these illumination distributions

allows the shape of a metal surface to be determined� Nayar et� al� �	� extended the

method by using continuous illumination distribution� referred to as a photometric

sampler� Their method determines not only surface shape but also surface re�ectance

parameters� Sato et� al� ��� analyzed color images in a similar setting� and determined

the shape and re�ectance of shiny objects for computer graphics purposes� and Oren

and Nayar �� proposed a method using surface re�ections and motion to determine

surface shape�

Surface re�ection can also be analyzed through the degree of polarization� as

demonstrated by Kosikawa ���� who proposed to use the degree of polarization� employ�

ing polarized light sources to determine the shape of metal surfaces� Later� Koshikawa

and Shirai ��� applied this method to the recognition of objects� Wol� �
� proposed to

analyze the degree of polarization in visible light for that same purpose� Wol� et� al�

��� indicated that the surface normal of the object surface is constrained by analyzing

the polarization of the object� Rahmann ��� proposed the method of recovering the

shape of specular surfaces from polarization� Jordan et� al� ���� ��� and Wol� et� al�

��	� analyzed the degree of polarization in the infrared wavelength�

A transparent surface also has surface re�ection components� Szeliski et� al� ����

analyzed the movement of surface re�ection components on a transparent object� and

separated surface re�ection from background images� Schechner et� al� ��� proposed

a method with which to determine only the surface re�ection component� using the

degree of polarization� That method also addressed the extraction of information about

the orientation of transparent planes� For graphics applications� Zongker et� al� ����

and Chuang et� al� ���� developed a method with which to generate the appearance of a

transparent object from a series of images taken under di�erent background conditions�

These methods� however� do not totally provide the shape information of transparent

objects of arbitrary shape�

Saito et� al� ��
� ��� employed the analysis of the degree of polarization and devel�

oped a method with which to measure the surface of a transparent object� Employing

an extended light source originally developed by Nayar et� al� �	�� they illuminated

a transparent object and were able to obtain surface re�ection components over the

entire visible surface� Then� by measuring the degree of polarization� they determined

surface orientations� Unfortunately� however� the degree provides two solutions corre�

sponding to one polarization degree� Thus� the method can be applied to measuring

a limited class of objects or to surface inspection where rough surface orientation is






predetermined� it cannot be applied to a general class of objects�

In this paper� we propose to disambiguate these two solutions by two novel meth�

ods� One is to introduce the polarization degree in the infrared wavelength� and the

other is to introduce the polarization analysis by rotating the object�

The �rst method� using infrared wavelength� obtains the degree of polarization in

the visible wavelength� which was likewise obtained in our earlier method� One po�

larization degree measured corresponds to two surface orientations� The polarization

degree in the infrared wavelength provides a single surface orientation to one polar�

ization degree� Thus� by simultaneously measuring the degree in the infrared domain�

we can uniquely determine the surface orientation� The measurement in the infrared

wavelength cannot be used directly because the polarization degree is relatively low

in some areas� and it is therefore better to use this measurement solely for judgment

purposes�

The second method� using object rotation� obtains two data of polarization from

two di�erent views� as is done in the binocular stereo method� Actually� we did not set

two cameras� for the purpose of experimental setup convenience� we �xed the camera

and tilted the object only slightly to obtain two data of two di�erent views� This

new method �rst obtains the degree of polarization� which was likewise obtained in

our earlier method� One polarization degree measured corresponds to two surface

orientations� The polarization degree of a novel view disambiguates this problem� By

comparing the polarization degree at the same surface point of each polarization data�

we determine the unique surface orientation�

In Chapter 	� we present the background theory of polarization and then develop

an underlying algorithm to determine surface orientation up to two possible incident

angles� using the polarization� In Chapter �� we describe a method with which to

obtain surface shape using the polarization degrees in both visible and infrared wave�

lengths� In Chapter � we describe the method for disambiguating the possibility in

the incident angle by rotating the object� In Chapter �� we describe the apparatus of

these two methods and the experimental results� Chapter � concludes the paper�
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Chapter �

Polarization Analysis

��� Fresnel Re�ection

The light that re�ects from the surface of most types of objects can be separated into

two major components� surface re�ection and body re�ection� Incident light partly

re�ects at the surface and partly penetrates inside the object� The light that penetrates

inside an opaque object randomly re�ects some of the pigments inside the object and

is emitted into the air� The light that specularly re�ects at the surface is called the

surface re�ection� and the light that is di�usely emitted into the air from inside the

object is called the body re�ection ����� We focus only on transparent objects in this

paper� analyzing surface re�ection rather than body re�ection�

In this section� we present a brief overview of the basic equation of re�ection and

refraction �	��� In Figure 	��� let us consider the case in which a light hits the interface

surface between two materials� the refractive indices of which are denoted as n� and

n�� respectively� Here we assume that the interface surface lies on the X�Y plane

without loss of generality� One part of the light is re�ected from the interface surface�

while another part penetrates the surface and is refracted when it enters the second

material� Because we assume that both materials are transparent� we can ignore the

component to be absorbed� We denote the incident light� the re�ected light� and the

transmitted light as the subscripts a� r� and t� respectively� and identify the parallel

and perpendicular components to the X�Z plane as p and s� respectively� The incident�

re�ecting� and transmitting angles are de�ned as ��� �
�

�� and ��� respectively� as shown

in Figure 	��� Given that the incident and the re�ected light pass through the same

materials� �� � ���� we can de�ne the parallel and perpendicular re�ectance ratios� Fp

�



Figure 	��� Fresnel re�ection

and Fs� respectively� as

Fp �
Irp
Iap

�
tan���� � ���

tan���� � ���

Fs �
Irs
Ias

�
sin���� � ���

sin���� � ���
�	���

where Iap is the component parallel to the X�Z plane of the incident light� and Irp

is that of the re�ected light� Ias is the component perpendicular to the X�Z plane of

the incident light� and Irs is that of the re�ected light� From the above equation� an

incident angle to make Fp � � can be obtained� This incident angle is referred to as

the Brewster angle� �B � The Brewster angle is obtained by substituting ��� �� � ��	

�namely� Fp � �� into Snell�s equation� n� sin �� � n� sin ��� as

tan �B �
n�
n�

� �	�	�

��� Polarization Degree

An interface surface of a transparent object causes little di�use re�ection or absorption�

under the condition of the re�ected light� the incident and re�ecting angles are the

��



Figure 	�	� Surface normal of the object

same� Thus� once the re�ecting angle and the orientation of the plane of incidence are

known� we can determine the surface orientation with respect to the viewer� as shown

in Figure 	�	� Here the plane of incidence is the one on which the light source� the

surface normal� and the viewer vectors lie� We will denote the direction of the plane

of incidence and the re�ecting angle as � and �� respectively� We will determine these

two angles by using the degree of polarization of re�ected light�

Generally speaking� natural light is unpolarized� it oscillates in all directions on

the plane of oscillation� which is perpendicular to the path of the light� Natural light�

however� becomes polarized once it goes through a polarization material or is re�ected

from a surface� We will measure the degree of polarization for this purpose�

As shown in Equation �	���� the intensity varies depending upon the direction on

the plane of oscillation and therefore� a di�erence can be observed when the polariza�

tion �lter is rotated in front of a CCD camera� The variance is described as a sinusoidal

function of rotation angles� We will denote the maximum and minimum brightness in

the observed intensities as Imax and Imin� Given that the sum of the maximum and

minimum brightness is the total brightness of the re�ected light� Ispecular�

Imax �
Fs

Fp � Fs
Ispecular� Imin �

Fp
Fp � Fs

Ispecular � �	���

By this equation� the direction parallel to the plane of incidence provides the

minimum brightness Imin � Namely� by measuring the angle to give the minimum

��



brightness� we can determine the direction of the plane of incidence� �� There are two

possible directions of the plane of incidence� �� and ��� which are de�nable as �� �

����� We assume the object as a closed smooth object and has no dimples ��concavity

in a convexity�� thus� we can determine the surface normal at the occluding boundary�

the surface normal heads toward the outside of the object at the occluding boundary�

thus� we can choose the correct direction of the plane of incidence� �� at the occluding

boundary� The surface normals on any neighboring points on the surface have similar

value due to the smoothness of the surface� We can determine the correct direction

of the plane of incidence� �� of a certain surface point if the � of the neighboring

points are already determined� By using the � at the occluding boundary as an initial

condition� we propagate the constraint of � throughout the surface� and �nally we

determine the whole � over the surface� We disambiguate the ambiguity of � by this

method�

The de�nition of the degree of polarization �or polarization degree� is�

� �
Imax � Imin

Imax � Imin

� �	��

The degree of polarization is � when the light is unpolarized� whereas it is � when the

light is linearly polarized� The linearly polarized light is observed when the parallel

component becomes �� This occurs when the incident angle and the re�ecting angle

are at the Brewster angle�

By substituting Equation �	��� and �	��� into Equation �	�� with Snell�s law� we

can represent the degree of polarization� �� as

� �
	 sin� � cos �

p
n� � sin� �

n� � sin� � � n� sin� � � 	 sin� �
� �	���

The degree of polarization is a function of the refractive index� n �� n��n��� and the

incident angle� �� Thus� by obtaining the degree of polarization from the data� we can

determine the incident angle� �� given the refractive index n�

Figure 	�� shows the relation between the degree of polarization and the incident

angle� Here� the horizontal and vertical axes denote the incident angle and the degree

of polarization� respectively� We can obtain the incident angle from the observed

degree of polarization even if we do not know the intensity of the light source� The

function has an extreme at the Brewster angle� From this function� an observed degree

of polarization provides two possible incident angles� except at the Brewster angle� It

is necessary to have a method to resolve this ambiguity� In this paper� we propose to

solve this problem by two methods� one by considering the polarization of far infrared

light� and the other by comparing two polarization data through rotating the object�

�	



Figure 	��� Relation between the degree of polarization and the incident angle � n � ���

�
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Chapter �

Thermal Radiation

In this chapter� we explain the method to solve the ambiguity by introducing thermal

radiation�

��� Introduction

Heat energy can propagate through space� This phenomenon is referred to as heat

propagation� A blackbody can completely absorb the heat energy radiated� According

to Kirchho��s law� the ratio between radiant and incoming heat energy is independent

of the object� rather� it is dependent only on the temperature of the object� A black�

body� which completely absorbs energy� can also radiate more energy than any other

objects that have the same temperature�

From the Stephan�Boltzman law� radiation energy� W � from the blackbody at the

temperature T is

W � �T � �����

where � is the Stephan�Boltzmann coe�cient and � � ���
� e�� �W�m��K��� Given

that any object has a positive temperature� any object should radiate energy�

A blackbody has an energy distribution� as shown in Figure ���� From the �gure� it

is apparent that the extremes of distributions shift along the temperature increment�

and in the area of room temperature� they exist in the infrared region� Thus� it is

appropriate to employ infrared measurement for measuring the radiation energy of a

blackbody at room temperature�

In following two sections� we describe how we derive the polarization degree in

infrared light� by using two approaches� In Section ��	 we describe how the polarization

degree is derived by using Kirchho��s law from the theory of thermodynamics� and in

�



Figure ���� Energy distribution of blackbody

Section ��� we explain how the polarization degree is derived by considering the light

emitted from inside the objects from the theory of optics� As a result� both of the

derived polarization degrees will be the same equation�

First� we will describe the uni�ed theory of the polarization in infrared light� which

does not depend on whether the object is transparent� translucent� or opaque� To

actualize this idea� let us assume that� in a sense� all objects can be considered to

be opaque� the light that hits the interface surface of objects can only re�ect or be

absorbed� The light that transmits into a transparent object will then be referred to

as the light that is absorbed into it� The light transmitted into a transparent object

escapes into the air from somewhere on the surface of the object� Let us say that such

escaped light is the light thermally emitted from the object�

This assumption that all objects can be considered to be opaque is used in Section

��	� This assumption holds when the corollary is in thermal equilibrium� given that all

light is expected to have the same amount of energy and to radiate in all directions�

��



��� Kirchho��s Law

By considering the state when the corollary is in thermal equilibrium� and by using

Kirchho��s law� we can explain the polarization of thermal radiation���� ��� �	� 	�� 		��

A typical object emits a lower amount of radiation energy than that emitted from

a blackbody� The ratio of the amount of radiation energy of a typical object in relation

to that from a blackbody is referred to as the emissivity� and is denoted as ��

Let us assume that infrared light strikes a smooth surface� Its parallel and per�

pendicular intensity to the plane of incidence are denoted as Iap and Ias� respectively�

When the infrared light strikes a surface with the incident angle �� the intensity of

parallel and perpendicular components of re�ected light are given as FpIap and FsIas�

respectively�

From the law of the conservation of energy� the di�erence between the incoming

and re�ected intensities� ���Fp�Iap and ���Fs�Ias� is the amount of energy absorbed

by the body� By denoting this ratio as absorptance 	� since Kirchho��s law provides

� � 	� we obtain

�p�T� 
� �� � �� Fp

�s�T� 
� �� � �� Fs � ���	�

Let us denote the intensity of thermal radiation from the perfect blackbody as W �

Then� the intensity of thermal radiation from our object is �W � and its polarization

can be written by using Equation ���	��

� IR �
Imax � Imin

Imax � Imin

�
�pW � �sW

�pW � �sW

�
Fs � Fp

	� Fp � Fs
�����

where � IR is the polarization degree in infrared light� We use the di�erent notation

�i�e� � IR� to distinguish this condition from that in the visible light� By substituting

Equation �	��� for Equation ������ we can derive the relationship between the polar�

ization degree� � IR� and the emitting angle� ��

��� Emitted Light

Let us explain the polarization phenomenon of thermal radiation by considering the

light emitted from inside the object �	��� Thermal radiation emitted from inside the

object is transmitted through the interface surface and radiated into the air�

��



For the explanation in this section� suppose material � be the object and material

	 be the air� as shown in Figure 	��� In this case� �� � ��� The refractive index of

the object relative to the air will be n � n��n�� �� is the emitting angle� and we will

derive the polarization degree as a function of � � ���

We can de�ne the parallel and perpendicular intensity ratios of transmission� Tp

and Ts� as

Tp �
Itp
Iap

�
sin 	�� sin 	��

sin���� � ��� cos���� � ���

Ts �
Its
Ias

�
sin 	�� sin 	��

sin���� � ���
����

where Itp is the component parallel to the X�Z plane of the transmitting light� and

Its is the component perpendicular to the X�Z plane of the transmitting light� Thus�

Imax and Imin will be written by using the total energy of the emitted light� W � as

Imax �
Tp

Tp � Ts
W� Imin �

Ts
Tp � Ts

W � �����

By substituting Equation ����� and ���� into Equation �	�� with Snell�s law� we

can represent the degree of polarization of thermal radiation � IR as

� IR �
Imax � Imin

Imax � Imin

�
Tp � Ts
Tp � Ts

�����

�
�n � ��n�� sin� �

	 � 	n� � �n � ��n�� sin� � �  cos �
p
n� � sin� �

�

��� Polarization Degree of Thermal Radiation

Fp � Tp � � and Fs � Ts � � holds� thus the resulting � IR in both Section ��	

�Equation ������ and Section ��� �Equation ������ are the same� This is because both

explanations deal with the same phenomenon� though the approach is di�erent� one is

based on the energy conservation law �Kirchho��s law�� the other on the mechanism

of the phenomenon�

Figure ��	�a� shows the relation between the polarization degree� � IR� and the

emitting angle� ��

The refractive index of the graph shown in Figure ��	�a� is ���� Because the re�

fractive index is a�ected by the wavelength� the refractive index of infrared light is

slightly di�erent from that of visible light� For example� the refractive index of glass is

approximately ���	 when the wavelength is approximately ���nm �visible light�� and

�




Figure ��	� Polarization degree of �a�thermal radiation �infrared light� � n � ��� ��

and �b�re�ected light �visible light� � n � ��� �

��



the refractive index of glass is approximately ��� when the wavelength is approxi�

mately 	�m �infrared light�� We use the same refractive index in infrared light as that

in visible light because the di�erence is negligible�

As shown in Figure ��	�a�� the relation is a one�valued function� there is a ��to��

correspondence between the polarization degree and the emitting angle� Thus� once

we measure the polarization degree in an infrared light� we can uniquely determine the

emitting angle� For the sake of comparison� Figure ��	�b� represents the visible light

condition� In this function� as mentioned� one polarization degree corresponds to two

emitting angles�

Unfortunately� however� the polarization degree in emitted infrared light is much

smaller than that in re�ected visible light� at the maximum� around an emitting angle

of �� degrees� it is still ��� In the smaller area� the polarization degree is less

than ���� In order to obtain such a smaller polarization degree� we are required to

measure Imax and Imin precisely� It is impractical to perform such a highly accurate

measurement using an ordinary CCD camera with a 	�� gray level�

In order to overcome this di�culty� we propose to use both visible and infrared

light� By using visible light� we can achieve a highly accurate measurement with

ambiguity� By using the infrared light� we discriminate between the two sides� First

we determine the polarization degree in the infrared region at the Brewster angle�

Using this polarization degree as the threshold value� we can determine to which side�

with respect to the Brewster angle� the emitting angle belongs� as indicated by the

dotted line in Figure ��	�

��



Chapter �

Object Rotation

In this chapter� we introduce the method of solving the ambiguity by rotating the

object�

��� Introduction

We explained how to calculate surface normal from polarization data in Chapter 	�

In that chapter� we indicated that there exists an ambiguity problem� we cannot

uniquely determine the surface normal from several possible surface normals obtained

by the measurement� We obtain the incident angle � ��� � � � ���� and the angle

of the incident plane � ��� � �  ����� from polarization data� Since we de�ne

the coordinates as Figure ��� the incident angle equals the elevation angle and the

angle of the incident plane equals the azimuth angle� Therefore� we can determine the

surface normal n if we obtain two angles � and �� As we discussed in p���� we can

disambiguate the ambiguity of �� thus� the problem is to solve the ambiguity of ��

In this chapter� we explain how to disambiguate the ambiguity of �and to obtain the

correct surface normal by rotating the object�

To satisfy this requirement� we propose to tilt �rotate� the object at a small angle�

Tilting the object with respect to the camera coincides with observing the object from

di�erent directions� We solve the ambiguity by comparing the polarization degree

of two data obtained from two di�erent view directions� We have to compare the

polarization degree of the two data at the identical point� Namely� we have to �nd

the points of two data which represent the same point on the object surface� For this

purpose� we introduce the geometrical property of the object surface� We �nd some

couple of points where the invariant value of the surface is identical� and utilize those
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couple of points as matching points�

First of all� we explain the fundamental theory of Gaussian geometry�	� 	��� in

Section �	� Next� we classify some surfaces by the value of curvature �Section ����

And� we explain about the de�nition of �folding point�� in Section ��

In Section ��� we segment the data of polarization degree in some regions� and

also indicate how we disambiguate each region� We describe the method of �nding the

matching point by considering geometrical property� in Section ��� And� in Section

�
� we furnish proof that we can obtain the invariant value of geometrical property

from the polarization degree data�

Finally� we point out that we can uniquely determine the elevation angle ��incident

angle� � by calculating the di�erence of the polarization degree between the matching

points �Section ����

Consequently� we �nally obtain conclusions as follows�

�� We segment the polarization degree data in the B�O region� the B�N region and

the B�B region �Section ����

	� We can straightforwardly disamgibuate the B�O region and the B�N region as

shown in Section ���

�� For the B�B region� we �nd the point where the polarization degree is minimum

and the surface normal is parallel to the rotation direction� and utilize that

point as a matching point� We calculate the di�erence of the polarization degree

between those two matching points� and solve the ambiguity from the sign of

this di�erence�

��� Gaussian Curvature

We consider that the cross section of the surface S with the plane consists of the unit

normal vector n and the arbitrary unit tangent vector X at the point P� We call this

plane the normal section� and we denote the curve generated by the cross section of

the surface and the normal section as c� We represent the curvature of c as �X �Figure

����

Euler�s theorem

Suppose �X is not a constant value through the arbitrary unit tangent

vector X at P on S� There exist two unit tangent vectors X� and X� which

have the following properties�
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Figure ��� Normal section

�� �X�
is the maximum of �X� �X�

is the minimum of �X

	� X� and X� are orthogonal�

�� When the angle between X and X� is represented as ��

�X � �X�
cos�� � �X�

sin��

Denition of principal curvatures

�X�
and �X�

are called principal curvatures at the point P� and X� and

X� are called principal directions� The plane which consists of n and X�

and the plane which consists of n and X�� are called principal planes� If

�X�
� �X�

� �X� the point is called umbilic�

Denition of Gaussian curvature and mean curvature

K � �X�
�X�

is called Gaussian curvature at the point P� If P is umbilic

��X�
� �X�

� k�� then K � k�� H � �
�
��X�

� �X�
� is called mean

curvature�

In the following section� we will brie�y describe �X�
as �� and �X�

as ���

��� Surface Classes

Suppose that we are classifying the surface by Gaussian curvature �Figure �	��

We name each class of surface in Figure �	 for convenience� From up to down� left

to right� elliptic patch� hyperbolic patch� planar patch� cylindrical patch� toric patch�

monkeysaddle�shaped patch� slide�shaped patch� and bell�shaped patch� K � � at

		



Figure �	� Surfaces classi�ed by Gaussian curvature
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elliptic patch� K  � at hyperbolic patch� K � � at the other patches� We argue the

curvatures only at the dotted curve of the toric patch� the slide�shaped patch and the

bell�shaped patch� and at the center dot of the monkeysaddle�shaped patch�

The toric patch is shaped like a doughnut� and the Gaussian curvature at the

dotted curve is zero� In this �gure� the Gaussian curvature of the left part of the

dotted curve is positive and that of the right part is negative� The monkeysaddle�

shaped patch is shaped like a horse�s saddle� but has an additional concave spot to

accommodate the monkey�s tail� In this �gure� the Gaussian curvature at the center

dot in the monkeysaddle�shaped patch is zero� The slide�shaped patch is shaped like

a children�s slide� and the Gaussian curvature is zero at any place� In particular�

the dotted line denotes the umbilic point and the principal curvatures are zero� The

slide�shaped patch consists of two cylindrical patches stuck at the dotted line� The

bell�shaped patch is shaped like a part of a bell� and the Gaussian curvature of the

dotted curve is zero� In this �gure� the Gaussian curvature of the upper part of the

dotted curve is negative and that of the lower part is positive�

Surfaces can be classi�ed in three types� K � �� K  � and K � �� but we

consider the more detailed classi�cation of each surfaces in Figure �	 by the sign

of ��� �� ��� � ���� The Gaussian curvature K� mean curvature H� and principal

curvatures �� and �� of each surfaces in Figure �	 are shown in Table ��� Note that

the curvatures of the toric patch� the slide�shaped patch and the bell�shaped patch

described in this table are the curvatures at the dotted curve of those patches� and the

curvatures of the monkeysaddle�shaped patch are the curvatures at the center dot�

��� Folding Point

In Figure ��� we describe the relationship between the shapes of the �D curve repre�

sented on 	D plane and their curvatures�

The shape of the curve is represented as h � f�t� and depicted in Figure ���a��

Figure ���b� shows the elevation angle � of each point on the curve� Figure ���c�

represents the Gaussian mapping from the normal of the curve to the unit circle

�Gaussian circle��

The curve convex to the upper direction described in the topmost row has positive

curvature� the curve convex to the lower direction described in the second row has

negative curvature� and the curve described in the rows below the second row has

zero curvature� As denoted in the rows below the second row� there are two classes of

curves whose curvature will be zero� one is a line� the other is an in�ection point�

	



Surface classes Possible combinations of curvatures

Elliptic K � �� H � �� K � �� H  ��

patch �� � �� �� � � ��  �� ��  �

Hyperbolic K  �� H  �� K  �� H � �� K  �� H � ��

patch �� � �� ��  � �� � �� ��  � �� � �� ��  �

Planar K � �� H � ��

patch �� � �� �� � �

Cylindrical K � �� H � �� K � �� H  ��

patch �� � �� �� � � �� � �� ��  �

Toric K � �� H � �� K � �� H  ��

patch �� � �� �� � � �� � �� ��  �

Monkeysaddle�shaped K � �� H � ��

patch �� � �� �� � �

Slide�shaped K � �� H � ��

patch �� � �� �� � �

Bell�shaped K � �� H � �� K � �� H  ��

patch �� � �� �� � � �� � �� ��  �

Table ��� Surface classes and curvatures
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Figure ��� Curves classi�ed by curvature� �a� Shape of curves� �b� Elevation angle of

�a�� �c� Gaussian circle of �a��
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By examining at the graph of the elevation angle � at the in�ection point �Figure

���b��� we determine that the elevation angle � is locallymaximumor locallyminimum

at the in�ection point� If an elevation angle � is locally maximum at a certain point�

there is no larger angle than the local maximum �max in the neighboring points� In

this case� when we track the point on the Gaussian circle along t� the direction of

the tracking reverses at a certain point� If an elevation angle � is locally minimum

at a certain point� there is no smaller angle than the local minimum �min in the

neighboring points� In this case� when we track the point on the Gaussian circle along

t� the direction of the tracking reverses at a certain point� We de�ne the �folding

point� as an in�ection point�

We will adopt a similar de�nition for the 	D surface represented in �D space� We

de�ne the �folding point� as an in�ection point of the curve generated by the cross

section of the surface and the arbitrary plane which includes the surface normal�

Let us see if there appear a folding point in each surface classes described in Section

��� The folding point never appears unless the Gaussain curvature is zero� Figure

� represents an example of the Gaussian mapping to the Gaussian sphere from the

planar patch� the cylindrical patch� the toric patch� the monkeysaddle�shaped patch�

the slide�shaped patch� and the bell�shaped patch�

The planar patch is mapped onto a point on the Gaussian sphere� and the cylindri�

cal patch is mapped onto a curve on the Gaussian sphere� The toric patch is mapped

onto an image which is point symmetry to a certain point� The point where K � �

is mapped onto that point on the Gaussian sphere� If we track from the point where

K  � to the point where K � �� we pass through the point where K � �� The points

where K � � are not folding points� The monkeysaddle�shaped patch has a folding

point which is denoted in the �gure as the dot in the center of the patch �K � � and

H � ��� The slide�shaped patch also has folding points which are denoted in the �gure

as a dotted line �K � � and H � ��� The bell�shaped patch has folding points which

are denoted in the �gure as a dotted curve �K � ���

We use the term �folding curve� to denote the curve which consists of folding

points�

For the bell�shaped patch in this �gure� the upper surface where K  � and the

lower surface where K � � are mapped onto the southern part from the folding curve�

where K � �� If the point walks from the point where K � � to the point where

K  �� the point walks on the Gaussian sphere �rst from south to north� and then

arrives at the folding curve when K � �� the point then turns in the opposite direction�

and walks from north to south�

	




Figure �� Gaussian mapping of some patches
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Two lines appear in the principal directions for a planar patch� A convex curve and

a line appear in the principal directions for a cylindrical patch� A convex curve and

a line appear in the principal directions at the point where K � � for a toric patch�

Either a line and an in�ection point� or two in�ection points� or two lines appear in the

principal directions at the point where K � � and H � � for a monkeysaddle�shaped

patch� A line and an in�ection point or two in�ection points appear in the principal

directions at the point where K � � and H � � for a slide�shaped patch� A convex

curve and an in�ection point appear in the principal directions at the point where

K � � for a bell�shaped patch�

��� Brewster Segmentation

We explained how to obtain the polarization degree of the light re�ected on the object

surface in Chapter 	� Now we segment the data of polarization degree into some

regions bounded by Brewster angle �B � Points of Brewster angle have no ambiguity

and the polarization degree � is equal to ��

We assume that the object is projected orthographically to the camera� In addition�

we assume that the surface shape observed from the camera causes no self occlusion�

thus� the surface is a regular surface and can be represented as z � f�x� y��

Also we assume that the object surface is su�ciently smooth �	 or � times di�eren�

tiable�� From these assumptions� the curve connected with points where the elevation

angle is Brewster angle will form a closed curve� We denote a point where the eleva�

tion angle is equal to Brewster angle as the �Brewster point�� and the closed curve

consisting of Brewster points as the �Brewster curve�� We de�ne the segmentation by

Brewster curves as �Brewster segmentation��

Now we want to determine the incident angle �elevation angle� �� however� the

correspondence between the polarization degree � and the incident angle � is � to 	�

thus� we have to disambiguate this ambiguity to determine the correct incident angle

�Figure 	���� The incident angle of all points in the region segmented through the

Brewster segmentation� is either greater than the Brewster angle or smaller than the

Brewster angle� Therefore� we can uniquely determine all the incident angles in the

region if we can disambiguate only one point in the region� The graph described in

Figure 	�� indicates that the correspondence between � and � is � to � at �� � � � �B �

and also � to � at �B � � � ��� �details are written in p����� Therefore� if we know

whether the incident angle � is greater or smaller than Brewster angle �B � we can

determine the value of � uniquely from the value of ��
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Figure ��� Coordinates of surface normal

The coordinates are de�ned as Figure ��� where the camera is placed at the H �

��z� axis� We de�ne � as the angle between surface normal and H axis� � as the angle�

from x axis to y axis� between x axis and the projected vector of surface normal to x�y

plane� Therefore� the incident angle � ��� � � � ���� represents the elevation angle

of the surface normal n� and the angle of the plane of incidence � ��� � �  �����

represents the azimuth angle of the surface normal n�

Regions are grouped into three classes� which we will denote as follows�

�� B�O region

	� B�N region

�� B�B region

�B� represents the capital letter of Brewster curve� �O� represents the capital letter of

Occluding boundary� and �N� represents the capital letter of North pole� North pole

is that of the Gaussian sphere� the direction where the camera is placed�

The polarization degree of the points of the Brewster curve is �� thus� there is no

ambiguity and the elevation angle �incident angle� � can be determined uniquely� The

surface normal of the points of occluding boundary faces out from the object and is

perpendicular to the view direction� and the elevation angle � is ���� There exist no

data outside the occluding boundary� The elevation angle � of the points which maps

onto the north pole is ��� while� the angle of the plane of incidence �the azimuth angle�
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� is unde�ned at those points� Therefore� segmenting regions by B�curve� O�curve�

and N�curve is considered to be the most e�cient segmentation�

B�O region is the region which includes the occluding boundary� B�N region is the

region which includes the points which can be mapped onto the north pole of Gaussian

sphere� B�B region is the region which includes neither the occluding boundary nor

the north pole points� and is bounded only by Brewster curves�

We assume that� even if we tilt the object in an in�nitesimal angle in any direction�

the class of the region never changes through such object rotations� Speci�cally� we

assume that the number of regions does not change through any object rotations�

and also that each regions deform and translate only in�nitesimally� In addition� we

assume that the self�occlusion never occurs even if we were to tilt the object at an

in�nitesimal angle�

To satisfy the above assumptions� we consequently assume that there are no points

where the elevation angle � is equal to ��� except for the occluding boundary� There�

fore� the only region which has the points where the elevation angle � is equal to ���

is B�O region� and there are no regions which have the points where the elevation

angle � is equal to ��� expect for B�O region� As a result� if there is a point where

the polarization degree � equals to �� the elevation angle � of that point always be

�� except for the occluding boundary� B�N region is de�ned to have a point where

the elevation angle � equals to ��� thus� only the B�N region has a point where the

polarization degree � equals to � except for B�O region� We de�ned that the region

which is neither B�O region nor B�N region is the B�B region� thus� the elevation angle

� of the points in B�B region equals to neither �� nor ����

By calculating the background subtraction image� the occluding boundary can be

calculated� thus� the B�O region is easily determined� The B�N region is determined

only by searching the point where the polarization degree equals zero� The region

which is neither the B�O region nor the B�N region is the B�B region� Therefore�

the obtained data of polarization degree can be easily classi�ed into B�O region� B�N

region� and B�B region even if we do not solve the ambiguity�

B�O region includes the occluding boudary whose elevation angle � equals to ����

thus� we can disambiguate this region and determine the elevation angle to be in

the range of �B � � � ���� B�N region includes the points that will be mapped

onto the north pole of the Gaussian sphere� whose elevation angle � equals to ���

thus� we can disambiguate this region and determine the elevation angle to be in the

range of �� � � � �B � In the following sections� we will discuss only the method of

disambiguating B�B regions�

��



Figure ��� Object rotation

��	 Matching Point

We obtain one set of data of the polarization degree for input data� However� one

set of data is not enough for disambiguating the ambiguity in the B�B region� thus�

we obtain extra data� We tilt �rotate� the object in a small angle and obtain another

additional data of polarization degree �Figure ����

We will solve the ambiguity in the B�B region by comparing the data of the polar�

ization degree of the object placed unrotated and that of the object rotated at a small

angle� For comparison� we should �nd identical points �matching points� of two data

of polarization degree� By adopting the geometrical property of the object surface�

we investigate an invariant property of the object surface unchangeable through the

object rotation� We compare the polarization degree at two points where the invariant

property on the surface matches� and disambiguate the ambiguity problem� We adopt

the �folding point� �Section �� for this invariant property of object surface�

The Gaussian mapping of the B�B region of the object surface onto the Gaussian

sphere is depicted in Figure �
� The B�B region includes neither the occluding bound�

ary nor the north pole point� and is bounded only by the Brewster curve� thus� the

folding curve always appears�

Because urvature is a property of a surface� it is an invariant value which is not

changed by rotating the object� For this reason� considering curvatures for �nding

matching points is a suitable option� It is better to adopt a point where the curvature

is zero rather than the curvature itself� because the curvature can be easily in�uenced

by an error and has ambiguity� Therefore� we adopt folding curves� Adoption of

�	



Figure �
� Gaussian mapping of B�B region

folding curves is the most practical idea� because folding curves always appear in the

B�B region�

We cannot determine the number of folding curves that will appear in a closed

region� however� we can state that the boundary of the region in the Gaussian sphere

which is not the Brewster curve is always a folding curve� Therefore� we utilize the

boundary of the region of the Gaussian sphere mapped from B�B region ��folding

curve� for the matching� Namely� if the B�B region is to the north of Brewster curve�

we utilize the northernmost folding curve for the matching� and if the B�B region is

to the south of the Brewster curve� we utilize the southernmost folding curve for the

matching�

However� there is a problem in matching two folding points� We can decide which

folding curve corresponds to which folding curve� but we cannot decide which point on

the folding curve corresponds to which point on the folding curve� Therefore� we de�ne

the matching point as the point where the folding curve and the great circle intersect

�Figure ���� This great circle must be a cross�section between the Gaussian sphere

and the plane which is parallel to the rotation direction of the object and includes the

north pole of the Gaussian sphere� The surface point which is mapped onto this great

circle� still maps onto this great circle after the object rotation� thus enabling unique

��



Figure ��� Matching Point

matching�

Summary�

�� If the B�B region is mapped onto the north of the Brewster curve� choose the

northernmost point for the matching point which intersects the great circle�

namely� choose the point where the polarization degree is minimum�

	� If the B�B region is mapped onto the south of the Brewster curve� choose the

nearest point to the equator for the matching point which intersects the great

circle� namely� choose the point where the polarization degree is minimum�

There exist one or two points where the polarization degree is minimum and where

the folding curve and the great circle intersect� If there are two points� we can distinct

those points� because the azimuth angle � is in direct opposition� thus� there is no

di�culty for matching�

�



Our conclusion is that the point of the B�B region where the polarization degree is

minimum and the surface normal lies along the rotation direction is the best matching

point to adopt �Figure ����

There is not always only one point of the surface which maps onto the matching

point on the Gaussian sphere� For instance� there are several points which �t the above

de�nition of matching point in the slide�shaped patch shown in Figure �	� However�

our aim is a comparison of the value of polarization degree in two points� not matching

at two points �see Section �� for more detail�� There exist many points on the surface

which �t the above de�nition of matching point� however� the value of the polarization

degree does not change even if we choose any matching point� Therefore� even though

there are several matching points� the disambiguating process will not be disturbed�

��
 Folding Point of Polarization Degree

It is apparent by looking at the �gure that a folding curve of elevation angle � is also

a folding curve of polarization degree �� In this section� however� we will prove this

fact algebraically�

We denote the position of the point of the curve on the surface as s� The value

of the elevation angle � of the point on the surface is a function of s� The conditions

which elevation angle � be the maximum are�

d�

ds
� � and

d��

ds�
 � � ����

The conditions which elevation angle � be the minimum are�

d�

ds
� � and

d��

ds�
� � � ��	�

If the polarization degree � satis�es the following� it will be the minimum�

d�

ds
� � and

d��

ds�
� � � ����

The derivative of the polarization degree � by the elevation angle � �see Equation

����� � Figure �� for more detail� have the following nature�

d�

d�
� � ���  �  �B� ���

d�

d�
 � ��B  � � ���� ����

d�

d�
� � �� � �� or � � �B� � ����
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We are now considering the points in B�B region� thus� � never equals ��� And also� we

are not considering the points on the Brewster curve ��boundary of the region�� thus�

we can claim that the elevation angle � does not coincide with the Brewster angle �B �

Therefore� d��d� �� ��

The �rst and second derivatives of the polarization degree � by arbitrary axis s are

as follows�

d�

ds
�

d�

d�

d�

ds
��
�

d��

ds�
�

d��

d��

�
d�

ds

��

�
d�

d�

d��

ds�
� ����

First� the �  �B case� which the B�B region mapped onto the Gaussian sphere

is to the north of Brewster curve� In this case� the elevation angle � is minimum at

the folding curve� From Equation ��	�� ���� ��
� and ����� the �rst and second

derivatives of the polarization degree � by s at this point will be as follows�

d�

ds
� �

d��

ds�
�

d�

d�

d��

ds�
� � � ����

Therefore� considering Equation ����� the polarization degree � is minimum as ex�

pected�

Next� the � � �B case� which the B�B region mapped onto the Gaussian sphere is

to the south of the Brewseter curve� In this case� the elevation angle � is maximum

at the folding curve� From Equation ����� ����� ��
� and ����� the �rst and second

derivatives of the polarization degree � by s at this point will be as follows�

d�

ds
� �

d��

ds�
�

d�

d�

d��

ds�
� � � �����

Therefore� considering Equation ����� the polarization degree � is minimum as ex�

pected�

First� we proved that� at the folding curve of northernmost elevation angle �� the

polarization degree � is also a folding curve� when the B�B region is mapped onto the

north of the Brewster curve on the Gaussian sphere� Next� we proved that� at the

folding curve of southernmost elevation angle �� the polarization degree � is also a

folding curve� when the B�B region is mapped onto the south of the Brewster curve

on the Gaussian sphere�

��



Figure ��� Graph of derivative of polarization degree�

��� Di�erence of Polarization Degree

Finally� we explain the method to disambiguate the ambiguity problem of the surface

normal by comparing the polarization degree at the matching point of the object which

is not tilted with that of the object which is tilted at a small angle�

We regard the refractive index n as constant� thus� the polarization degree � is only

a function of the elevation angle �� If the rotation angle is ��� the Taylor expansion of

the polarization degree ��� � ��� around � will be�

��� � ��� � ���� � ������� �O������� � �����

Therefore� if �� is su�ciently small� the di�erence of two polarization degrees will be�

��� � ��� � ���� � ������� � ���	�

The derivative of the polarization degree � by the elevation angle � is�

d�

d�
�

	 sin ��n� � sin� � � n� sin� ���	n� � sin� � � n� sin� ��p
n� � sin� ��n� � sin� � � n� sin� � � 	 sin� ���

� �����

The graph of this equation is depicted in Figure ���

�




The derivative of the polarization degree d��d� is positive when ��  �  �B � and

is negative when �B  � � ����

We do not need to know the rotation angle� however� we assume that we know the

rotation direction� And of course� the azimuth angle � has already been determined�

Therefore� we can determine the sign of ��� As a result� by calculating the sign of

the di�erence of two polarization degrees at the matching point using Equation ���	��

and from the sign of that di�erence� we can determine whether the elevation angle �

is greater or less than the Brewster angle�

Consequently� we can determine whether the elevation angle � in B�B region is in

the range of �� � � � �B or �B � � � ����

And we can also see from Figure �� that the polarization degree � is an increasing

function in the range of �� � � � �B and is a decreasing function in the range of

�B � � � ���� Namely� the correspondence between the polarization degree � and the

elevation angle � is � to � in the range of �� � � � �B � and also is � to � in the range

of �B � � � ���� Therefore� if we just determine that the elevation angle � in B�B

region is whether in the range of �� � � � �B or �B � � � ���� we can determine the

elevation angle � uniquely from the value of the polarization degree ��

��



Chapter �

Experiments

��� Experimental Setup

����� Experimental Setup of Visible Light

Figure ����a� shows the apparatus for visible light measurement� As a light source� we

employ a spherical di�user illuminated from point light sources� This spherical di�user

becomes a secondary light source and illuminates an object that is located at the center

of the sphere from all directions� Because we determine surface orientations using only

surface re�ection and the surface re�ection occurs only when the emitting and incident

angles are the same� it is necessary to illuminate an object from all directions in order

to observe surface re�ections over the entire object surface�

We use three ���W incandescent light bulbs as the point sources� located circularly

and at �	� degrees apart� The spherical di�user is made of plastic and its diameter

is � cm� The object� as mentioned above� is located at the center of the sphere� and

is illuminated by this spherical di�user� which works as an unpolarized spherical light

source� This object is observed through a small hole at the top of the sphere by a

black and white CCD camera� A polarization �lter is mounted between the hole and

the TV camera�

����� Experimental Setup of Infrared Light

Figure ����b� shows the apparatus for the infrared light� Given that the infrared light

is thermal radiation from a body and is not a re�ection component� we do not use

any light source� Any object emits infrared light� However� at room temperature� the

amount of infrared light emitted from the object in ��� �m is relatively small� and

��



Figure ���� Experimental setup

contains infrared light emitted from the air� This makes the measurement of Imax and

Imin very sensitive to noise� Thus� we increase the temperature of the object to ����

degrees Celsius� and subtract that from the air temperature to obtain the amount of

infrared light emitted solely from the object�

In order to increase the temperature of the object� we use a hair dryer to blow

heated air over it� We also employ an infrared �lter and an IR�CCD camera in ��

� �m� Our IR�CCD camera determines an appropriate gain in order to map the

temperature range onto a 	�� gray level� Thus� a measured intensity is converted to a

temperature� In order to determine the polarization degree� we convert the measured

temperature into intensity using Equation ������

��� Measurement

����� Measurement of Non�rotated Object in Visible Light Do�

main

By rotating a polarization �lter� we obtain a sequence of images of an object� We

measure from � degrees through �
� degrees at � degree intervals� From this process

we obtain �� images�

�



At each pixel of the �� images� we observe variance of intensity and determine

the maximum and minimum intensities� Imax and Imin � Because those measurements

occur at � degree intervals� it is di�cult to obtain the exact maximum and minimum

values� By using the least square minimization� we �t a sinusoidal curve to those

obtained measurements� then determine the maximum and minimum values� From

those values� we determine two possible surface orientations using the algorithm�

����� Measurement of Thermal Radiation

For the infrared measurement� we heat the object to a temperature of ���� degrees

Celsius by using the hair dryer for a certain period� Once equilibrium in the heat

exchange is achieved� we use the same procedure� rotating the polarization �lters and

obtaining a sequence of images� as we did in the visible light measurement� Here� the

maximum and minimum correspond to Tmax and Tmin� we convert them to Imax and

Imin as appropriate� then obtain the polarization degree�

After the measurements in infrared and visible light� we compare those data at each

pixel� For alignment� we use two calibration points around the object� by extracting

these two points in both image sequences� we can align the two measurements� At each

pixel� measurement in visible light provides two solutions� Then� from the polarization

degree in infrared measurement� we can choose one of the solutions� it is determined

whether the obtained polarization degree in infrared light is smaller or larger than the

infrared polarization degree at the Brewster�s angle� ��IR�

����� Measurement of Rotated Object

First� we use the same procedure� rotating the polarization �lters and obtaining a

sequences of images� as we did for the non�rotated object�

Next� we apply the same measurement to the rotated object� The object is ro�

tated slightly to make a novel view observed from the �xed camera� After the same

calculation� we obtain the polarization degree of this second view�

After obtaing those measurements� we compare the measurements of those two

data at each corresponding point� To determine the corresponding points of the two

data� we �rst separate the polarization data into some regions by the Brewster angle�

Then� we detect a minimum value of the polarization degree in each region whose

surface normal is the same orientation as the rotating direction� Finally� the di�erence

value of the polarization degrees in those two corresponding points disambiguates the

problem of the ambiguity of the angle� as a result� we obtain the correct incident angle

of the object surface�

�



Figure ��	� Error characteristics of the spherical object

��� Experimental Result

����� Experimental Result of Thermal Radiation Method

Experiments using a spherical object

In order to determine the accuracy of the system� we use an acrylic sphere having a

refractive index of ��� and a diameter of �cm� Figure ��	 shows the error characteristics

from the observed measurement� The horizontal axis is the emitting angle and the

vertical axis denotes the measurement errors� In the �gure� the dotted straight line

denotes the case without any measurement errors�

From this experiment� except around the area of small angles� the measurement

error is small and we can achieve high accuracy in measurement�

One of the reasons for the relatively noisy data around the smaller angles is that

the spherical di�user has a hole in its top portion� and the object does not receive light

from that area� Another reason is that the derivative of the degree of polarization is

close to zero where the incident angle is near ��� and is less stable for determining the

incident angle from the degree of polarization�

	



Figure ���� The resulting shape of the shell�sh�shaped object

Experiments using a shellsh�shaped object

In order to demonstrate the applicability of our system to an object of general shape�

we determined the shape of the object shown in Figure ����a�� The shell�sh�shaped

object is made of acrylic and its refractive index is ���� Figure ����b� shows the

obtained shape of the object� Here the system provides the distribution of surface

orientations� From this obtained distribution� a relaxation algorithm �	�� converts the

orientation distribution into a shape corresponding to that of the object�

Figure ����b� recovers the original shape� Notably� the area of steeper angles

�i�e�� those larger than the Brewster angle� provides better recovery results� At the

boundary� the shape is a bit noisy� At that region� the polarization degree is almost

zero� and it is di�cult to determine this value�

����� Simulational Result of Object Rotation Method

Before practicing our object rotation method� we applied our technique to simulation

objects to verify the e�ectiveness of our method� Figure ��� ���� and ��� is the result of

the simulation� Figure ���a�� ����a�� and ����a� depict Brewster curves and occluding

boundary of simulation objects� There are �� �� and � regions depicted in Figure

���a�� ����a�� and ����a�� respectively� Figure ���b�� ����b�� and ����b� depict the

result �D shapes� Our simulation software produces the data of polarization degree�

and our disambiguating software computes the surface normal of the object� In this

�



Figure ��� Simulation result of the object No��� �a� Boundaries of each regions� �b�

The result �D�shape�

simulation� we inspected the e�ectiveness of our method which solves the ambiguity

and determined the correct incident angle� �� In this simulation� we assumed that

the angle of the plane of incidence� �� is given� In addition� we assumed that internal

re�ection would not occur�

����� Experimental Results of Object Rotation Method

Experiments using a hemispherical object

In order to determine the accuracy of the system� we use a plastic hemisphere having

a refractive index of ��� and a diameter of �cm�

Figure ��
 illustrates the resultant shape of the hemisphere� Figure ��
�a� repre�

sents the comparison between the theoretical shape and the obtained shape� Circle

represents the theoretical shape and the plotted dots represent the obtained shape�

Figure ��
�b� represents the result �D shape�

The height of the obtained shape seems to be lowered� The reason is that the

obtained polarization degree is attenuated by internal re�ection�

Because a transparent object re�ects and transmits light� the observed intensity is

the combination of the light re�ected at the surface and the light transmitted from

behind the object� We placed the object on a black pipe to block the light from behind

the object� We should observe only the light re�ected directly from the surface� but the

shape of the object is not known a priori� so we cannot exactly estimate such internal

re�ection� We assume that any light which is not directly re�ected from the surface





Figure ���� Simulation result of the object No�	� �a� Boundaries of each regions� �b�

The result �D�shape�

Figure ���� Simulation result of the object No��� �a� Boundaries of each regions� �b�

The result �D�shape�
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�a� �b�

Figure ��
� The result of the real hemisphere object� �a� Circle for the theoretical

shape and the plotted dots for the obtained shape� �b� The result �D�shape�

has an unpolarized� uniform intensity� Thus� we estimate the value of the intensity

caused by the unintended re�ection� and subtract the estimated value from all input

images� This modi�cation raises the maximum polarization degree of raw data to ��

A closed� continuous� and smooth object� which we assume� always has a Brewster

angle� of which polarization degree equals to �� thus� this modi�cation is e�ective in

any objects�

Figure ��� illustrates this modi�cation e�ect� The theoretical value of the polar�

ization degree is represented as a solid curve� and the obtained data is plotted as dots�

Figure ����a� is produced by using the raw data and Figure ����b� is by modi�ed data�

At the range where the angle is bigger than the Brewster angle� the modi�ed data

is likely to �t the theoretically estimated value� while at the range where the angle

is smaller than the Brewster angle� the modi�ed polarization degree is still smaller

than the theoretically estimated value� This result explains the reason for the height

attenuation in Figure ��
� In Figure ��
� we can see that the angle bigger than the

Brewster angle is likely to �t the theoretically estimated height� while the height where

the angle is smaller than the Brewster angle is lower than the theoretically estimated

height�

Table ��� shows the error of the hemisphere� Note that its diameter is �cm� The

error is an average error through all pixels� These errors are calculated as the di�erence

between the true value and the experimental value�

Experiments using a bell�shaped object

In order to demonstrate the applicability of our system to an object of general shape�

we determined the shape of the object shown in Figure ����a�� Figure ����b� represents
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Figure ���� The graph of the polarization degree of the hemisphere object� �a� Raw

data plotted� �b� Modi�ed data plotted�

Polarization degree ���
���	

Angle of the incident plane� � 	���
�����

Incident angle� � ���������

Surface normal 	�������

Height 	����
mm

Table ���� Error of plastic transparent hemisphere






Brewster curves and occluding boundary� There are � regions� The bell�shaped object

is made of acrylic and its refractive index is ���� We rotated the object approximately

� degrees and obtained the data from two views� By applying our method to the

obtained data� we �nally obtain the distribution of the surface normal of the object�

From this obtained distribution� a relaxation algorithm �	�� converts the orientation

distribution into a shape corresponding to that of the object� Figure ����c� shows the

obtained shape of the object� and Figure ����d� shows an example of an rendering

image of the object�

Figure ���� illustrates how the obtained shape �ts the theoritical shape� Dots

represent the obtained height data� A solid line represents the theoretical shape�

which is obtained by hand using the edge of the photo of the object observed from the

side of the object�

These �gures prove that our method works relatively well� however� the obtained

shape does not seem to be as precise as we would like it to be� The internal re�ection

of the object and the mutual re�ection between the object and the experimental setup

reduce the accuracy of the measurement�
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Figure ���� The result for the bell�shaped real object� �a� A photo of the actual object�

�b� Boundaries of each regions� �c� The result �D�shape� �d� Rendering image of the

object�

Figure ����� The result of the real bell�shaped object
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Chapter �

Conclusions

In this paper� we propose a method for determining the shape of a transparent object

using polarization� Surface orientations are determined using the polarizations in

visible light of a certain view� Because an algorithm using only one view in visible

light provides ambiguities� polarization in infrared and polarization of the rotated

object are then employed�

The thermal radiation� which also has characteristics of polarization� can be ob�

served as infrared light� This polarization is an one�valued function� measuring po�

larization degree in infrared domain provides the emitting angle� However� the po�

larization degree is relatively low� and in some cases it is di�cult to determine the

polarization degree precisely� Thus� we propose to use polarization in both visible and

infrared light�

By rotating the object� we also can disambiguate the angular problem� We obtain

two set of data� one is for the object not rotated� and the other is for the object rotated

in a small angle� We applied a Brewster segmentation to these data and divided into

some regions� We calculated the di�erence of the polarization degree between these

two set of data at the matching point� the point which surface normal lies along the

rotation direction and which polarization degree is minimum in the B�B region� From

that di�erence value� we determined the correct surface normal�

We have implemented the proposed method� and demonstrated its ability to de�

termine the shape of a transparent object� First� we demonstrated the e�ectiveness

of our proposed method through simulation� Second� by using a hemispherical ob�

ject� we determined the accuracy of the method and demonstrated its e�ectiveness�

Then� using an object of general shape� we demonstrated the ability of the system to

determine the shapes of complex objects�
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There are many beautiful glass objects of art in all over the world� However�

those glass objects of art are hard but fragile� Those objects are always in danger of

destruction� Many methods are proposed for modeling cultural heritages�	
�� though�

there are few methods proposed for modeling glass objects of art� Our proposed

method will be useful for modeling glass objects of art�

Our future work is to obtain the shape of transparent objects more accurately�
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Appendix A

Theory of Optics �In More

Detail�

A�� Maxwell�s equations

Maxwell�s equations for arbitrary mediums are�

rotE � ��B

�t

rotH � j�
�D

�t
divD � �

divB � �

� where E is electric vector� B is magnetic induction� t is time� H is magnetic vector�

j is electric current density� D is electric displacement� � is charge density� These

equations represents�

�� Faraday�s electromagnetic induction law

	� Amp ere�s law

�� Gauss� law

� magnetic monopole does not exist

� respectively� Following equations relates E to D and H to B respectively�

D � ��E� P

B � ���H �M�

��



� where P is electrolytic polarization�M is magnetization� �� is dielectric permittivity

of vacuum� �� is magnetic permeability of vacuum�

Dielectric �or insulator� medium does not include electric charge� and does not

produce electric current when electric �eld appears� For isotropic dielectrics� following

equations hold�

� � �

j � �

D � �E

B � �H

Thus� Maxwell�s equations for isotropic dielectrics �include vacuum� will be�

rotE � ���H
�t

�A���

rotH � �
�E

�t
�A�	�

divE � � �A���

divH � � �A��

� where � is dielectric permittivity� and � is magnetic permeability�

Following equations are de�ned in the research �eld of vector analysis�

rA � gradA �

�
B�

�Ax

�x
�Ay

�y

�Az

�z

�
CA

r�A � rotA � curlA �

�
B�

�Az

�y
� �Ay

�z
�Ax

�z
� �Az

�x
�Ay

�x
� �Ax

�y

�
CA

r �A � divA �
�Ax

�x
�
�Ay

�y
�
�Az

�z

r�A � �A �
��Ax

�x�
�
��Ay

�y�
�
��Az

�z�

� where

A �

�
B�

Ax

Ay

Az

�
CA

From above equations� the following equation can be derived�

rot rot � grad div�r� �A���

�




By calculating ���t of both sides of Equation �A���� we obtain the following equa�

tion by using Equations �A�	�� �A�� and �A����

���
�H

�t�
�

�

�t
�rotE�

� rot
�E

�t

�
�

�
rot�rotH�

�
�

�
�grad�divH� �r�H�

� ��

�
r�H

Thus�

r�H � ��
��H

�t�

Similarly�

r�E � ��
��E

�t�

These equations are wave equation which is ordinarilly expressed as�

r�A �
�

v�
��A

�t�

� where v is the propagating speed of the wave� Thus� the speed of electromagnetic

wave will be�

v �
�p
��

By denoting �� as the � in vacuum and �� as the � in vacuum� the light speed c in

vacuum can be expressed as�

c �
�p
����

In almost all mediums expect for magnetic mediums� � � �� holds� The ratio of the

light speed in vacuum to that in the medium is called refractive index of the medium�

n �
c

v
�

r
�

��
�A���

A�� Electric Field and Magnetic Field

Plane wave is expressed as�

A expf�i��t � k � r�g

��



� where A is amplitude� i is an imaginary number� � is angular frequency� t is time�

k is wave vector �or propagation vector�� r is position vector� From the de�nition of

wave� � � 	��� v � 
� and 
� � n
� where � is frequency� 
 is wavelength� 
� is that

in vacuum and n is refractive index� Wave vector is de�ned as k � kn� where k is wave

number and n is the unit vector which represents the direction of the propagation of

the wave�

k �
�

v
�

	�



�

	�n


�
� �

p
��� �A�
�

From�

k �

�
B�

kx

ky

kz

�
CA � n �

�
B�

x

y

z

�
CA

� we can derive�
�k � r
�x

� kx �
�k � r
�y

� ky �
�k � r
�z

� kz

The electric �eld and the magnetic �eld of plane wave is expressed as�

E � E� expf�i��t � k � r�g
H � H� expf�i��t � k � r�g

� where E� and H� are constant complex vector� By calculating ���t of E and H� we

obtain�

�E

�t
� �i�E �A���

�H

�t
� �i�H �A���

We denote the x�component of rotE as �rotE�x and we obtain�

�rotE�x �
�Ez

�y
� �Ey

�z

� i�kyEz � kzEy�

� i�k �E�x

Similarly we obtain�

�rotE�y � i�k �E�y � �rotE�z � i�k �E�z

Thus�

rotE � ik� E �A����

��



By applying the above derivation to H� we also obtain�

rotH � ik�H �A����

By substituting Equation �A���� and �A��� into Equation �A���� we obtain�

k �E � ��H �A��	�

By substituting Equation �A���� and �A��� into Equation �A�	�� we obtain�

k�H � ���E �A����

By calculating the dot product of k with Equations �A��	�� �A����� we obtain�

E � k � � �

��
�k �H� � k � �

H � k �
�

��
�k� E� � k � �

These equations indicates that the oscillation of the electric �eld E and the mag�

netic �eld H is orthogonal to the propagation direction k� concluding that light is a

transversal wave� From Equation �A��	� or �A����� we obtain�

E �H � � �

��
H � �k �H� �

�

��
E � �k �E� � �

Thus� E and H is also orthogonal� By calculating the absolute value of both sides of

Equation �A��	� or �A���� using Equation �A�
�� we obtain�
p
�jEj � p

��jHj �A���

A�� Poynting Vector and Intensity

Poynting vector is de�ned as�

S � E�H

This represents the propagation direction and the instantaneous energy density per

unit time and per unit area� propagates by the electromagnetic �eld� We call the light

energy per unit time and per unit area as intensity and represent as I� I is expressed

as I � jSj �� where � represents the time average�

I �  jSj �
�

�

	
jEjjHj

�
�

	

r
�

��
jEj�

�
n

	

r
��
��
jEj� �A����

��



Figure A��� Electric vector

A�� Fresnel formulae

Consider the interface of medium� �dielectric permittivity ��� and medium	 �dielectric

permittivity ��� lies in the xy�plane and the plane of incidence lies in the yz�plane

�Figure A�� and Figure A�	�� �Note� This de�nition is di�erent from Figure 	����

We denote the incident angle� the re�ected angle� the transmitted angle� as ��� ���

��� respectively� The electric amplitude of the incident light� the re�ected light� the

transmitted light is denoted as E�i� E�r� E�t� respectively� and the magnetic amplitude

of those are denoted as H�i� H�r� H�t� respectively� We divide these lights in p�

component� which is parallel to the plane of incidence� and s�component� which is

parallel to x�axis� Then the light can be expressed as the following vectors�

E�i �

�
B�

Ei
s

Ei
p cos ��

Ei
p sin ��

�
CA � E�r �

�
B�

Er
s

�Er
p cos ��

Er
p sin ��

�
CA � E�t �

�
B�

Et
s

Et
p cos ��

Et
p sin ��

�
CA

H�i �

�
B�

Hi
p

�Hi
s cos ��

�Hi
s sin ��

�
CA � H�r �

�
B�

Hr
p

Hr
s cos ��

�Hr
s sin ��

�
CA � H�t �

�
B�

Ht
p

�Ht
s cos ��

�Ht
s sin ��

�
CA

At the interface z � �� because of the continuity of the light wave� the sum of the

amplitude of the incident light and the re�ected light� which both are in the medium

�� must be equal to the amplitude of the transmitted light� which is in the medium 	�

��



Figure A�	� Magnetic vector

for each x�component and y�component� Thus� the following equations hold�

Ei
s �Er

s � Et
s

Ei
p cos �� � Er

p cos �� � Et
p cos ��

Hi
p �Hr

p � Ht
p

Hi
s cos �� �Hr

s cos �� � Ht
s cos ��

By substituting H �
p
����E and Snell�s law

p
�� sin �� �

p
�� sin ��� the above

equations can be rewritten as�

Ei
s � Er

s � Et
s �A����

�Ei
p � Er

p� cos �� � Et
p cos �� �A��
�

�Ei
p � Er

p� sin �� � Et
p sin �� �A����

�Ei
s � Er

s� tan �� � Et
s tan �� �A����

The ratio of the amplitude of the re�ected light to that of the incident light is

called amplitude re�ectivity� and the ratio of the amplitude of the transmitted light to

that of the incident light is called amplitude transmissivity� The amplitude re�ectivity

r and the amplitude transmissivity t of p�component and s�component is de�ned as�

rp �
Er
p

Ei
p

� rs �
Er
s

Ei
s

� tp �
Et
p

Ei
p

� ts �
Et
s

Ei
s

�	



From Equation �A��
� and �A�����

Et
p � �Ei

p �Er
p�
cos ��
cos ��

� �Ei
p � Er

p�
sin ��
sin ��

i�e� ��� rp� sin �� cos �� � �� � rp� sin �� cos ��

Thus�

rp �
sin �� cos �� � sin �� cos ��
sin �� cos �� � sin �� cos ��

�
sin 	�� � sin 	��
sin 	�� � sin 	��

�
cos��� � ��� sin��� � ���

sin��� � ��� cos��� � ���

�
tan��� � ���

tan��� � ���
�A�	��

From Equation �A���� and �A�����

Et
s � Ei

s � Er
s � �Ei

s � Er
s�
tan ��
tan ��

i�e� �� � rs� tan �� � ��� rs� tan ��

Thus�

rs � � tan �� � tan ��
tan �� � tan ��

� � sin �� cos �� � cos �� sin ��
sin �� cos �� � cos �� sin ��

� � sin��� � ��� � sin��� � ���� sin��� � ��� � sin��� � ���

sin��� � ��� � sin��� � ��� � sin��� � ���� sin��� � ���

� � sin��� � ���

sin��� � ���
�A�	��

From Equation �A��
� and �A�����

Er
p � Ei

p � Et
p

cos ��
cos ��

� �Ei
p �Et

p

sin ��
sin ��

i�e� cos �� sin �� � tp cos �� sin �� � � sin �� cos �� � tp sin �� cos ��

Thus�

tp �
	 sin �� cos ��

sin �� cos �� � sin �� cos ��

�
	 sin �� cos ��

�
�
sin 	�� �

�
�
sin 	��

�
	 sin �� cos ��

sin��� � ��� cos��� � ���
�A�		�

��



Figure A��� Amplitude re�ectivity and amplitude transmissivity

From Equation �A���� and �A�����

Er
s � Et

s �Ei
s � Ei

s �Et
s

tan ��
tan ��

i�e� �ts � �� tan �� � tan �� � ts tan ��

Thus�

ts �
	 tan ��

tan �� � tan ��

�
	 sin �� cos ��

sin �� cos �� � cos �� sin ��

�
	 sin �� cos ��

�
�
sin��� � ��� �

�
�
sin��� � ��� �

�
�
sin��� � ��� � �

�
sin��� � ���

�
	 sin �� cos ��
sin��� � ���

�A�	��

Equations �A�	��� �A�	��� �A�		�� �A�	�� are called Fresnel�s law �Figure A����

A�� Derivation of Intensity Ratio

The light energy at the interface per unit area is expressed by using Equation �A����

as�

Incident Light Ii �
n�
	

r
��
��

E�
�i cos ��

Re�ected Light Ir �
n�
	

r
��
��

E�
�r cos ��

�



Transmitted Light It �
n�
	

r
��
��

E�
�t cos ��

The intensity re�ectivity of p�component Fp and that of s�component Fs are�

Fp �

�
Ir
Ii

�
p

�

�
E�r

E�i

��

p

� r�p

Fs �

�
Ir
Ii

�
s

�

�
E�r

E�i

��

s

� r�s

From this equations and Equation �A�	�� and �A�	��� we can derive Equation �	����

The intensity transmissivity of p�component Tp and that of s�component Ts are�

Tp �

�
It
Ii

�
p

�

�
E�t

E�i

��

p

n� cos ��
n� cos ��

�
n� cos ��
n� cos ��

t�p

Ts �

�
It
Ii

�
s

�

�
E�t

E�i

��

s

n� cos ��
n� cos ��

�
n� cos ��
n� cos ��

t�s

From this equations and Equation �A�		� and �A�	�� and Snell�s law n� sin �� �

n� sin ��� we can derive Equation �����

A�	 Graph of Intensity Ratio

By substituting Snell�s law into Equation �	���� we obtain�

Fp �
� � n� � �n� � ��n�� sin� � � 	 cos �

p
n� � sin� �

� � n� � �n� � ��n�� sin� � � 	 cos �
p
n� � sin� �

Fs �
� � n� � 	 sin� � � 	 cos �

p
n� � sin� �

� � n� � 	 sin� � � 	 cos �
p
n� � sin� �

�

By substituting Snell�s law into Equation ����� we obtain�

Tp �
 cos �

p
n� � sin� �

� � n� � �n� � ��n�� sin� � � 	 cos �
p
n� � sin� �

Ts �
 cos �

p
n� � sin� �

� � n� � 	 sin� � � 	 cos �
p
n� � sin� �

�

These graph are depicted in Figure A�� The graphs with the tags written as Fp

and Fs are the graphs of the parallel and perpendicular intensity ratios of re�ection�

respectively� The graphs with the tags written as Tp and Ts are the graphs of the

parallel and perpendicular intensity ratios of transmission� respectively�

��



Figure A�� Graphs of intensity ratios
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Appendix B

Gaussian Mapping

Consider translating the starting point of the unit surface normal vector nP at the

point P of the surface S to the origin of the coordinate axes� Therefore� the end of

the unit surface normal vector lies on an unit sphere and let us denote this point as

g�P �� We call the mapping�

g � S �� unit sphere �B���

as Gaussian mapping� Figure B�� depicts a Gaussian mapping�

We will explain in more detail �Figure B�	��

The Gaussian mapping of a sphere whose radius is R is depicted in Figure B�	�a��

The point P and Q of the sphere maps onto the point g�P � and g�Q�� respectively�

on unit sphere� where each surface normal is the same� Scaling the sphere of radius

R to an unit sphere will be the Gaussian mapping� namely� the similarity mapping of

similarity ratio ��R will be the Gaussian mapping�

The Gaussian mapping of a kind of a lemon is depicted in Figure B�	�b�� The

upper part of the lemon is scale�downed by Gaussian mapping near to the north pole

of the unit sphere� while� the sharp part of the lemon extends by Gaussian mapping

to almost an half of the unit sphere� You will see that the degree of curving surfaces

is in proportion to the scale of the mapped part of the unit sphere to the surface part�

How the elliptic surface maps onto the unit sphere by Gaussian mapping was shown

in Figure B�	�b�� whereas� how the hyperbolic surface maps onto the unit sphere by

Gaussian mapping is shown in Figure B�	�c�� The left and the right part around P

maps inversely to the right and the left part around g�P �� The small area around P

reversely maps to the small area around g�P �� You will see that hyperbolic surface

reversely maps onto the unit sphere by Gaussian mapping�

�




Figure B��� Gaussian mapping

��



Figure B�	� Three examples of Gaussian mapping
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Appendix C

Fitting Sine Curve

By rotating a polarization �lter� we obtain a sequence of images of an object� We

measure from � degrees through �
� degrees at � degree intervals� From this process

we obtain �� images�

At each pixel of the �� images� we observe variance of intensity and determine the

maximumand minimumintensities� Imax and Imin � Because those measurements occur

at � degree intervals� it is di�cult to obtain the exact maximum and minimum values�

By using the least square minimization� we �t a sinusoidal curve to those obtained

measurements� then determine the maximum and minimum values� The sinusoidal

function we used has three parameters� Although general sinusoidal function requires

four parameters� the fact that the polarization �lter has a cycle of ��� degrees through

rotation reduces the required number of parameters to three� Thus� the sinusoidal

function which we want to �t can be expressed as�

y � A sin 	�x�B� � C �A � �� ��  B  �� � �C���

Fitting this sinusoidal curve by the least square minimization is a non�linear �tting

and is di�cult to manage �� though it can be calculated by using Levenberg�Marquardt

method� etc�� Thus� we �rst �t the linear sinusoidal curve� which is expressed as�

y � a sin 	x� b sin 	x� C �C�	�

� by the linear least square minimization and transformed this equation into Equation

�C���� From Imax � C �A and Imin � C �A �and two �s by � � B � �
�
� � n� �� �

�  	���� we determine two possible incident angles using Equation �	�� and �	����

Equations �C��� and �C�	� are related by the following formulae�

a sin � � b sin � �
p
a� � b� sin�� � 	�


�



sin	 �
bp

a� � b�

cos	 �
ap

a� � b�


�



Appendix D

Relaxation Method

We calculate the surface shape from surface normal using relaxation method� The

acquired surface normal have some errors in the value� so we must use an appropriate

method for recovering the surface shape� Relaxation method is a suitable method for

this purpose�

When the suraface is represented as H � f�x� y�� the surface normal can be repre�

sented by n � �p� q� ��� where p � ��H��x and q � ��H��y�

To recover the surface shape from surface normal� we calculate the following for�

mula for su�cient times�

Hn���x� y� �
�



�
Hn�x� �� y� �Hn�x� �� y� �Hn�x� y � �� �Hn�x� y � ��

�

�
�



�
�p

�x
�x� y� �

�q

�y
�x� y�

�
�

This method requires a kind of boundary points where the height is already known�

We set the boundary of the object as height zero�


	



Appendix E

English�Japanese Dictionary

for Technical Terms
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Appendix F

References Written in

Japanese

F�� References for Computer Visions

F�� References for Optics


�



F�� References for Thermodynamics







F�� References for Di�erential Geometries
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