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Shape Estimation of Transparent Objects

by Using Polarization Analyses

Daisuke Miyazaki† and Katsushi Ikeuchi†

Recently, techniques developed in the field of computer graphics and virtual reality have
been applied to many environments, with the result that measuring the 3D shapes of real
objects has become increasingly important. However, few methods have been proposed to
measure the 3D shape of transparent objects such as glass and acrylics. In this paper, we
introduce three methods that estimate the surface shape of transparent objects by using po-
larization analysis. The first method determines the surface shape of a transparent object
by using knowledge established in the research field of thermodynamics. The second method
determines the surface shape of a transparent object by using knowledge established in the
research field of differential geometry. The third method gives an initial value of the surface
shape and then determines the true surface shape of a transparent object by iterative com-
putation. At the end of the paper, we discuss the advantages and the disadvantages of these
three methods.

1. Introduction

In the field of computer vision, few methods
have been proposed for estimating the shape of
transparent objects, because of the difficulty of
dealing with the internal interreflection (inter-
nal reflection or interreflection), which is the
phenomenon that the light not only reflects at
the surface of the transparent object but also
transmits into the object and causes multiple
reflection and transmission inside it. This pa-
per presents three methods for estimating the
surface shape of transparent objects by analyz-
ing the polarization of transparent objects.

1.1 Related Work
Polarization is a phenomenon in which the

light oscillates in one direction. Recently, con-
siderable research has been conducted to esti-
mate the shape of an object by using polar-
ization. Koshikawa and Shirai 1) proposed to
use the degree of polarization, employing cir-
culary polarized light sources to determine the
surface normal of specular polyhedrons. They
used a method called Mueller calculus to cal-
culate the polarization state of the light. Wolff
and Boult 2) indicated that the surface normal
of the object’s surface is constrained by ana-
lyzing the polarization of the object, and esti-
mated the surface normal of a planar glass from
two views. Rahmann 3) estimated the orienta-
tion of a flat object and the position of the light
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source by polarization analysis of a single view.
Rahmann 4) also addressed the potential of re-
covering the shape of specular surfaces from po-
larization. Later, Rahmann and Canterakis 5)

estimated the shape of specular objects from
two or more views. Also, they proved that the
quadratic shape of specular objects can be esti-
mated from two views 6). Drbohlav and Šára 7)

estimated the shape of diffuse objects by com-
bining polarization analysis and photometric
stereo. Miyazaki, et al. 8) estimated the shape
and reflectance of specular objects and the illu-
minant direction from one view. Saito, et al. 9)

employed the analysis of the degree of polariza-
tion and developed a method with which the
surface of a transparent object could be de-
termined; however, the degree of polarization
provided two candidates of surface normal, and
they did not solve this ambiguity. They chose
the correct surface normal from a prior clue
given from a human knowledge. Unfortunately,
because these methods do not consider internal
interreflections, they do not provide sufficient
accuracy for estimating the shape of transpar-
ent objects.

A few methods that estimate the 3D shape
of transparent objects have been proposed.
Murase 10) estimated the shape of water sur-
face by analyzing the undulation of the wa-
ter surface. Hata, et al. 11) estimated the sur-
face shape of transparent objects by analyz-
ing the deformation of the light projected onto
the transparent objects. Ohara, et al. 12) esti-
mated the depth of the edge of a transparent
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object by using shape-from-focus. Ben-Ezra
and Nayar 13) estimated the parameterized sur-
face shape of transparent objects by using
structure-from-motion. Kutulakos, et al. 14),15)

estimated both the depth and the surface nor-
mal of transparent objects by multiple view-
points and multiple light sources. These meth-
ods, however, do not estimate arbitrary shapes
of transparent objects.

1.2 Overview
Saito, et al. 9) employed analysis of the de-

gree of polarization and developed a method
with which to measure the surface of a trans-
parent object. Then, by measuring the DOP
(degree of polarization) of a transparent ob-
ject, they determined surface normals. Unfor-
tunately, however, the DOP provides two solu-
tions corresponding to one DOP.

We will introduce two methods that removed
the ambiguities from these two solutions. The
first method employs the DOP of the ther-
mal radiation, and the second method em-
ploys polarization analysis by considering the
differential-geometrical property of the object
surface. Saito’s method and these two methods
do not consider the effect of internal interreflec-
tion; hence, we introduce the third method,
which estimates the surface shape of transpar-
ent objects more precisely by considering both
reflection and transmission.
First method In Section 3, we explain how
to analyze the thermal radiation of thermody-
namics and optics to obtain the correct surface
normal and thus solve the ambiguity problem.
Second method In Section 4, we explain
how to solve the ambiguity problem by rotat-
ing the object and analyzing the differential-
geometrical property of the surface. This
method requires observing the object in a visi-
ble light domain, which is a different approach
from the method in Section 3. However, the
purpose of both the first method and the sec-
ond method is to solve the ambiguity problem.
The first method is more robust than the sec-
ond method; however, the first method cannot
measure ice or jelly because it requires the ob-
ject to be heated.
Third method The two methods described
in Section 3 and Section 4 focus on solving the
ambiguity problem. However, these methods do
not focus on solving the internal interreflection
problem; they consider the reflection, but they
do not consider the transmission. The method
in Section 5 focuses on solving this internal

interreflection problem by considering both re-
flection and transmission. The third method
produces a more precise result than other two
methods by only observing the visible light from
one direction. However, it does not solve the
ambiguity problem, and it requires an initial
state of the shape.

The paper is organized as follows. In Sec-
tion 2, we present the background theory of
polarization and then develop an underlying al-
gorithm to determine surface normal up to two
possible zenith angles, using polarization. We
explain our three methods in Section 3–5, one
for each section. In Section 6, we describe the
apparatus of these three methods and the ex-
perimental results obtained from using them.
Section 7 discusses these three methods and
Section 8 concludes the paper.

2. Polarization Analysis

2.1 Fresnel Reflection
In this section, we present a brief overview

of the basic equation of reflection and refrac-
tion 16). In Fig. 1, let us consider the case in
which a light hits the interface surface between
two materials, the refractive indices of which
are denoted as n1 and n2, respectively. One
part of the light is reflected from the interface
surface, while another part penetrates the sur-
face and is refracted when it enters the second
material. The plane including the surface nor-
mal and the incident light ray is called the POI
(plane of incidence). We identify the parallel
and perpendicular components to the POI as ‖
and ⊥, respectively. The incident, reflecting,
and transmitting angles are defined as θ1, θ′1,
and θ2, respectively, as shown in Fig. 1. Since
we focus on optically smooth transparent ob-
jects, the incident angle and the reflecting angle
will be the same: θ1 = θ′1. θ1 and θ2 are related

Fig. 1 Reflection, refraction, and transmission.
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Fig. 2 Reflected and transmitted light observed by
the camera.

by Snell’s law,
n1 sin θ1 = n2 sin θ2 . (1)

We define the parallel and perpendicular inten-
sity reflectivities, R‖ and R⊥, respectively, as

R‖ =
tan2(θ1 − θ2)
tan2(θ1 + θ2)

R⊥ =
sin2(θ1 − θ2)
sin2(θ1 + θ2)

. (2)

The parallel and perpendicular intensity trans-
missivities, T‖ and T⊥, respectively, are de-
fined as

T‖ = 1−R‖ , T⊥ = 1−R⊥ . (3)
From Eq. (2), an incident angle to make R‖ = 0
can be obtained. This incident angle is referred
to as the Brewster angle, θB. The Brewster
angle is obtained by substituting θ1 + θ2 = π/2
(namely, R‖ = 0) into Snell’s equation as

tan θB =
n2

n1
. (4)

Once the reflecting angle and the POI an-
gle are known, we can determine the surface
normal with respect to the viewer, as shown in
Fig. 2. We will denote the POI angle and the
reflecting angle as ψ and θ, respectively, and de-
termine these two angles by using the degree of
polarization of reflected light, as shown in the
subsequent sections.

2.1.1 POI Angle
As shown in Eq. (2), the intensity of the re-

flected light varies depending on the direction of
oscillation in the plane of oscillation; therefore,
a difference can be observed when the polariza-
tion filter is rotated in front of a CCD camera.
The variance is described as a sinusoidal func-
tion of rotation angles. We will denote the max-
imum and minimum brightness in the observed
intensities as Imax and Imin. Given that the
sum of the maximum and minimum brightness
is the total brightness of the reflected light Ispec,

Imax =
R⊥

R‖ +R⊥
Ispec

Imin =
R‖

R‖ +R⊥
Ispec , (5)

since R⊥(θ1) ≥ R‖(θ1) holds for any θ1.
By this equation, the direction parallel to

the plane of incidence provides the minimum
brightness Imin. Namely, by measuring the an-
gle where the minimum brightness is observed,
we can determine the POI angle ψ (0 ≤ ψ <
2π). POI angle is determined as the angle
between +x-axis and POI, from +x-axis to
+y-axis, as shown in Fig. 2. There are two pos-
sible POI angles, ψLO and ψHI, which are defin-
able as ψHI = ψLO +π, where 0 ≤ ψLO < π and
π ≤ ψHI < 2π. Surface normal can be repre-
sented in polar coordinates with zenith angle θ
and azimuth angle φ. Azimuth angle φ equals
to ψLO or ψHI if there is no internal interreflec-
tion.

Since we assume that the object is a closed,
smooth object, we can determine the surface
normal at the occluding boundary; the surface
normal heads for the outside of the shape of the
projection of the object at the occluding bound-
ary. By using the φ at the occluding boundary
as an initial condition, we propagate the con-
straint of φ throughout the surface and, finally,
determine the value of φ, whether it is φ = ψLO

or φ = ψHI, over the entire surface, assuming
that all local parts of the surface are not con-
cave toward the camera direction.

The first method described in Section 3 and
the second method described in Section 4 use
this procedure to determine the azimuth an-
gle φ. These two methods only consider the
reflection and do not consider the transmission.
Therefore, the third method described in Sec-
tion 5 refines the azimuth angle by considering
the transmission.

2.1.2 Incident Angle
The definition of the degree of polarization is

ρ =
Imax − Imin

Imax + Imin
. (6)

The degree of polarization is 0 when the light
is unpolarized, whereas it is 1 when the light is
linearly polarized. The linearly polarized light
is observed when the incident angle and the re-
flecting angle are at the Brewster angle.

By substituting Eqs. (5) and (2) into Eq. (6)
with Snell’s law, we can represent the degree of
polarization ρ as

ρ=
2sin2 θ

√
n2− sin2 θ−n2 sin2 θ+sin4 θ

n2− sin2 θ−n2 sin2 θ+2sin4 θ
,

(7)
if we consider only the reflection and do
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Fig. 3 Relation between the degree of polarization
and the incident angle (n = 1.5).

not consider the transmission. The degree of
polarization is a function of the refractive in-
dex n (= n2/n1) and the incident angle θ (= θ1)
(0 ≤ θ ≤ π/2). Threfore, by obtaining the de-
gree of polarization from the data, we can deter-
mine the incident angle θ, given the refractive
index n.

Figure 3 shows the relationship between the
degree of polarization and the incident angle.
Here, the horizontal and vertical axes denote
the incident angle and the degree of polariza-
tion, respectively. We can obtain the incident
angle from the observed degree of polarization
even if we do not know the intensity of the
light source. The function has an extremum at
the Brewster angle. From this function, an ob-
served degree of polarization provides two pos-
sible incident angles, except at the Brewster an-
gle. It is necessary to have a method to re-
solve this ambiguity. In this paper, we pro-
pose to solve this problem by two methods, one
by considering the polarization of far infrared
light (Section 3), and the other by comparing
two polarization data sets through rotating the
object (Section 4). The unique zenith angle θ
is determined by these two methods if there is
only the reflection and there is no transmission.
The true zenith angle is obtained by the third
method described in Section 5, which considers
both reflection and transmission.

2.2 Polarization Raytracing
In this section, we present the technique that

calculates the polarization state of the light.
This technique not only considers the reflection
but also considers the transmission. It is used
in the third method described in Section 5.

2.2.1 Mueller Calculus
A conventional raytracing method renders

a 2D image from 3D geometrical shape data
of transparent objects or other kind of objects.

In this paper, we call the raytracing method
that considers the polarization effect the polar-
ization raytracing method. The algorithm of
the polarization raytracing method can be di-
vided into two parts. For the first part, the
calculation of the propagation of the ray, we
employ the same algorithm used in the conven-
tional raytracing method. For the second part,
the calculation of the polarization state of the
light, the direct implementation of Section 2.1
is possible. However, there are more effective
methods to calculate the polarization: Mueller
calculus 17), Jones calculus 17), and the method
that uses the coherence matrix 16). In this pa-
per, we employ Mueller calculus, because of its
simplicity of description, along with its ease
of understanding and implementation. These
three methods have almost identical functions;
thus, all discussions presented in this paper are
also applicable to other calculi. We will present
a brief overview of Mueller calculus in the fol-
lowing pages; however, we will leave the details
to the literature 17).

In Mueller calculus, the polarization state of
the light is represented as Stokes vector s =
(s0, s1, s2, s3)T . The Stokes vector is a 4D vec-
tor. Its first component s0 represents the in-
tensity of the light; its second component s1
represents the horizontal power of the linear
polarization; its third component s2 represents
the +45◦-oblique power of the linear polariza-
tion; and its fourth component s3 represents the
power of the right circular polarization. The
Mueller matrix M, which is a 4×4 matrix, rep-
resents how the object changes the polarization
state of the light. The operation of Mueller cal-
culus is a linear operation.

2.2.2 Mueller Matrix
First, we introduce a method for calculating

the polarization state of the reflected light and
the transmitted light when the POI angle is 0◦;
after that, we introduce a method for the case
when the POI angle is not 0◦.

Mueller Matrices of reflection R and trans-
mission T when the POI angle is 0◦ are repre-
sented as follows:

R=


(R‖+R⊥)/2 (R‖−R⊥)/2 0 0
(R‖−R⊥)/2 (R‖+R⊥)/2 0 0

0 0
√
R‖R⊥ 0

0 0 0
√
R‖R⊥
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Fig. 4 Calculation example of rotation Mueller
matrix for reflection.

T=


(T‖+T⊥)/2 (T‖−T⊥)/2 0 0
(T‖−T⊥)/2 (T‖+T⊥)/2 0 0

0 0
√
T‖T⊥ 0

0 0 0
√
T‖T⊥


.

(8)

Therefore, if we have a light ray with the
Stokes vector s impinged on an object, then the
Stokes vector of reflected light will be Rs, when
the POI angle is 0◦. The same thing can also
be said of the transmitted light.

Figure 2 illustrates the case when the POI
angle is ψ. Figure 4 explains how to calculate
the reflected light for this case. The reflection
matrix R is always multiplied to the Stokes vec-
tor whose POI angle is transformed to 0◦. So,
we first rotate the incident Stokes vector s with
the angle −ψ. After that, R is multiplied to the
transformed Stokes vector. Finally, the Stokes
vector is rotated again with the angle ψ in order
to restore the original coordinates. The result-
ing Stokes vector s′ is as follows:

s′ = C(ψ)RC(−ψ)s , (9)
where rotation matrix C is given as:

C(ψ) =




1 0 0 0
0 cos 2ψ − sin 2ψ 0
0 sin 2ψ cos 2ψ 0
0 0 0 1


. (10)

As for the case in Fig. 2, observed light is a com-
position of reflected light and transmitted light.
Therefore, the Stokes vector s′ of the observed
light is calculated as follows:

s′ = C(ψ)RC(−ψ)sr + C(ψ)TC(−ψ)st,

(11)

where Stokes vectors of the incident light are
represented as sr and st, and where sr and st

represent the lights that are set in the origin of
the reflection and transmission, respectively.

2.2.3 Phase Shift
If an incident angle is larger than the criti-

cal angle, then the light does not transmit and
totally reflects. This phenomenon is called to-
tal reflection and occurs when the light is inside
the object. Critical angle is defined in following
equation:

sin θC =
n2

n1
. (12)

Here, n1 and n2 are the refractive indices of two
materials, where n1 > n2; for example, n1 and
n2 might be the refractive indices of the ob-
ject and the air, respectively. Phase of the re-
flected light shifts when the total reflection oc-
curs. Therefore, for the total reflection, the fol-
lowing matrix D is used instead of the reflection
Mueller matrix R:

D(δ) =




1 0 0 0
0 1 0 0
0 0 cos δ sin δ
0 0 − sin δ cos δ


, (13)

where δ is the amount of the phase shift, calcu-
lated by using the following formula:

tan
δ

2
=

cos θ
√

sin2 θ − n2

sin2 θ
, (14)

where θ is the incident angle and n = n2/n1,
where n1 and n2 are the refractive indices of
the object and the air, respectively.

When the incident angle is less than the
Brewster angle, the phase of the reflected light
will be inverted; thus, the matrix D(180◦)
should be multiplied from the left to the re-
flection Mueller matrix.

2.2.4 Degree of Polarization
Because linear polarizer is used in this re-

search, the fourth parameter s3 of the Stokes
vector cannot be determined. The relation-
ship between the Stokes vector (s0, s1, s2)T

and Imax, Imin, ψ is:(
s0
s1
s2

)
=

(1 0 0
0 cos 2ψ − sin 2ψ
0 sin 2ψ cos 2ψ

)(
Imin + Imax

Imin− Imax

0

)
,

(15)

where Imax and Imin are defined in Section 2.1,
and ψ is a POI angle also defined in Section 2.1.
The degree of polarization represents how much
the light is polarized and is defined as follows:
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ρ̂ =

√
s21 + s22 + s23

s0
. (16)

However, the linear polarizer can only calculate
the following DOLP (degree of linear polariza-
tion):

ρ =
Imax − Imin

Imax + Imin
=

√
s21 + s22
s0

. (17)

For the remainder of this paper, we refer to the
ratio calculated by Eq. (17) as the DOP.

The DOP of Eqs. (17) and (6) are the same.
By considering only the reflection, we will ob-
tain Eq. (7). The true DOP is represented
by the Stokes vector as in Eq. (17) by con-
sidering both reflection and transmission. The
first method (Section 3) and the second method
(Section 4) analyze Eq. (7), while the third
method (Section 5) analyzes Eq. (17). The
value of the DOP from observation is same for
both Eqs. (7) and (17); however, the inherent
mathematical structure is quite different.

2.2.5 Illumination Distribution
In this paper, we assume that all light sources

are unpolarized. In Section 5, we assume that
the intensity of the illumination is known.

3. Shape Estimation of Transparent
Objects by using Polarization Anal-
ysis and Thermal Radiation

3.1 Thermal Radiation
Any object that has a positive temperature

will radiate energy. Let us explain the polariza-
tion phenomenon of thermal radiation by con-
sidering the light emitted from inside the ob-
ject 18)∼23). Thermal radiation generated from
inside the object is transmitted through the in-
terface surface and radiated into the air.

For the explanation in this section, suppose
material 1 to be the object and material 2 to
be the air in Fig. 1. In this case, θ2 > θ1. The
refractive index of the object relative to the air
will be n = n1/n2. θ2 is the emitting angle. The
emitting angle is the angle between the surface
normal and the camera direction, and is the
same as the zenith angle.

We can define the parallel and perpendicular
intensity transmissivity, T‖ and T⊥, as

T‖ =
sin 2θ1 sin 2θ2

sin2(θ1 + θ2) cos2(θ1 − θ2)
T⊥ =

sin 2θ1 sin 2θ2
sin2(θ1 + θ2)

, (18)

derived from Eqs. (1)–(3). Therefore, Imax and

Fig. 5 DOP of (a) thermal radiation (infrared light)
(n = 1.5), and (b) reflected light (visible light)
(n = 1.5).

Imin will be written by using the total energy
of the emitted light, W , as

Imax =
T‖

T‖ + T⊥
W

Imin =
T⊥

T‖ + T⊥
W , (19)

since T‖(θ2) ≥ T⊥(θ2) holds for any θ2.
The degree of polarization of thermal radia-

tion ρIR will be as follows:

ρIR =
Imax − Imin

Imax + Imin
=
T‖ − T⊥
T‖ + T⊥

. (20)

3.2 Degree of Polarization of Thermal
Radiation

Figure 5 (a) shows the relation between the
DOP, ρIR, and the emitting angle, θ. As
shown in this figure, there is a 1-to-1 corre-
spondence between the DOP and the emitting
angle. Therefore, once we measure the DOP
in an infrared light, we can uniquely determine
the emitting angle. For the sake of comparison,
Fig. 5 (b) represents the visible light condition.
In this function, as mentioned, one DOP value
corresponds to two emitting angles.

Unfortunately, however, the DOP in emitted
infrared light is much smaller than that in re-
flected visible light. Thus, we propose to use
both visible and infrared light. By using visible
light, we can achieve a highly accurate mea-
surement with ambiguity. By using the infrared
light, we discriminate between the two sides.
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Fig. 6 Gaussian mapping and regions.

4. Shape Estimation of Transparent
Objects by using Polarization Anal-
ysis and Differential Geometry

In this section, we introduce the method of
solving the ambiguity by rotating the object.
If the reader of this paper is not familiar to
the fundamental theory of Gaussian geometry,
please read the literature 24),25).

4.1 Brewster Segmentation
We have explained how to obtain the DOP of

the light reflected on the object’s surface in Sec-
tion 2. Now, we segment the data of the DOP
into regions bounded by the Brewster angle θB.
Points of the Brewster angle have no ambiguity
and the DOP ρ is equal to 1.

Since we assume that the object is a closed,
smooth object, the curve connected by points
of the Brewster angle will form a closed curve.
This curve is sometimes thick, sometimes thin,
and sometimes a combination of both. We de-
note a point where the zenith angle is equal to
the Brewster angle as the “Brewster point” and
the closed curve consisting of Brewster points as
the “Brewster curve.” We define the segmenta-
tion by Brewster curves as “Brewster segmen-
tation.”

The incident angle of all points in the region
segmented through Brewster segmentation is ei-
ther greater than the Brewster angle or smaller
than the Brewster angle. Therefore, we can
uniquely determine all the incident angles in the
region if we can disambiguate only one point in

the region.
Now, let us consider the surface regions seg-

mented with regard to the Brewster angle with
a Gaussian sphere representation. The regions
generated by Brewster segmentation can be
grouped into three classes (Fig. 6):
( 1 ) B-E region — a region enclosed within
a Brewster curve and an occluding bound-
ary (mapped to the Equator on the Gaussian
sphere),
( 2 ) B-N region — a region enclosed only with
a Brewster curve and containing a surface nor-
mal toward the viewer direction (mapped to the
North Pole on the Gaussian sphere),
( 3 ) B-B region — a region enclosed only with
one or more Brewster curves, neither containing
an occluding boundary or the surface normal
facing the viewer.

The result of the Brewster segmentation of
the object depicted in Fig. 7 is shown in Fig. 8.
Figure 8 (a) is a gray image of the DOP, where
ρ = 0 is represented as black and ρ = 1 is repre-
sented as white. Figure 8 (b) is the result of the
Brewster segmentation of Fig. 8 (a). There are
two Brewster curves and one occluding bound-
ary and one each of a B-E region, a B-B region,
and a B-N region.

4.1.1 B-E Region
The B-E region is the region that includes

the occluding boundary whose zenith angle θ
equals 90◦. On the Gaussian sphere, the B-E
region is enclosed within a small circle mapped
from the Brewster curve and an equator
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Fig. 7 A photograph of the bell-shaped object.

Fig. 8 (a) A gray image of obtained degree of polariza-
tion of the bell-shaped object and (b) the result
of Brewster segmentation.

mapped from the occluding boundary. The
zenith angle of all the points of the B-E re-
gion is located between the Brewster angle and
the occluding angle, 90◦. The graph described
in Fig. 3 indicates that the correspondence be-
tween θ and ρ is one to one at this region,
θB ≤ θ ≤ 90◦; thus, we can uniquely determine
the incident angle from an observed DOP, ρ.

We assume that the self-occlusion never oc-
curs even if we tilted the object at an in-
finitesimal angle. To satisfy the above assump-
tions, we consequently assume that there are no
points where the zenith angle θ is equal to 90◦
except for the occluding boundary. By calculat-
ing the background subtraction image, the oc-
cluding boundary can be calculated; thus, the
B-E region is easily determined.

4.1.2 B-N Region
The B-N region is the region that includes one

or more points (this is preferable to point(s))
mapped onto the North Pole on the Gaussian
sphere. As shown in Fig. 3, the region is
mapped to a spherical cap on the Gaussian
sphere, enclosed by a small circle mapped from
the Brewster curve. The North Pole is located
at the center of this spherical cap. The zenith
angle of all the points in this region is in the
range of 0◦ ≤ θ ≤ θB. From the graph in Fig. 3,
we can conclude that, in this range, the corre-
spondence between θ and ρ is one to one, and
we can also determine the zenith angle from the

observed DOP.
If the DOP ρ equals zero, the zenith angle θ

will be 0◦ or 90◦. However, since we assume
that the points where the zenith angle θ is equal
to 90◦ only appear at the occluding boundary,
the B-N region is determined only by search-
ing the point where the degree of polarization
equals zero.

4.1.3 B-B Region
The B-B region is defined as the region that

includes neither the occluding boundary nor the
North Pole points and is bounded by one or
more Brewster curves. The region that is nei-
ther the B-E region nor the B-N region is the
B-B region. In the following sections, we will
propose a method for disambiguating B-B re-
gions.

4.2 Folding Curve
There are two possibilities for the existence

of the B-B region on the Gaussian sphere. The
B-B region is either on the northern side of
the Brewster curve or on the southern side of
the Brewster curve. The B-B region mapped
onto the Gaussian sphere is bounded by one
Brewster curve and one or more extra curves
(Fig. 6). By considering the points in the B-B
region on the Gaussian sphere, we find that
there is one extreme point — northernmost or
southernmost — in each azimuth angle. We
denote the set of these points to be a folding
curve. Now, we will prove that the folding curve
is a geometrical invariant; the Gaussian curva-
ture at the folding curve will be zero.
Theorem Any folding curve on an object’s
surface is a parabolic curve on that object’s sur-
face. That is to say, at any surface point on
a folding curve, the Gaussian curvature at the
surface point vanishes.
Proof. A surface normal can be represented
in gradient space, a space constructed by gra-
dients p and q:

p =
∂H

∂x
, q =

∂H

∂y
, (21)

where H = H(x, y) denotes the height of the
object surface. A folding curve is an extremum
not only in a Gaussian sphere, but also in gra-
dient space, p = p(x, y) and q = q(x, y). There-
fore, one or both of the following equations
holds:

∂p

∂x
=
∂p

∂y
= 0 (22)

∂q

∂x
=
∂q

∂y
= 0 . (23)
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Fig. 9 Object rotation.

Hessian H and Gaussian curvature K are re-
lated by the following equation:

sgnK = sgn detH , (24)
where Hessian is defined as:

H =




∂2H

∂x2

∂2H

∂x∂y
∂2H

∂y∂x

∂2H

∂y2


 . (25)

Since Eqs. (22) or (23) holds, from Eqs. (21)–
(25), K = 0 is finally obtained.

A parabolic curve is a curve where Gaussian
curvature is zero and Gaussian curvature of the
object’s surface does not change through rota-
tion of the object. Therefore, we can conclude
that the folding curve is intrinsic to an object
and invariant from the viewer direction.

4.3 Corresponding Points
We will solve the ambiguity in the B-B region

by comparing the data of the DOP of a non-
rotated object and that of a rotated object at
a small angle (Fig. 9). We compare the DOP
at two points where the invariant property on
the surface matches, and disambiguate the am-
biguity problem.

The Gaussian mapping of the B-B region of
the object’s surface onto the Gaussian sphere
is depicted in Fig. 6. The B-B region includes
neither the occluding boundary nor the north
pole point, and is bounded only by the Brewster
curve; thus, the folding curve always appears.

We define the corresponding point as the
point where the folding curve and the great cir-
cle intersect (Fig. 10). This great circle must
be a cross-section between the Gaussian sphere
and the plane that is parallel to the rotation
direction of the object and includes the north
pole of the Gaussian sphere. The surface point
that is mapped onto this great circle still maps

onto the great circle after the object’s rotation,
thus enabling unique matching.

To summarize:
( 1 ) If the B-B region is mapped onto the
north of the Brewster curve, choose the north-
ernmost point for the corresponding point that
intersects the great circle; namely, choose the
point where the DOP is minimum.
( 2 ) If the B-B region is mapped onto the
south of the Brewster curve, choose the near-
est point to the equator for the corresponding
point that intersects the great circle; namely,
choose the point where the DOP is minimum.

4.4 Difference of Degree of Polariza-
tion

Finally, we describe the method used to re-
solve the ambiguity problem of the surface nor-
mal by comparing the DOP at the correspond-
ing point of the nontilted object with that of
the tilted object.

We regard the refractive index n as constant;
thus, the DOP ρ is only a function of the zenith
angle θ. The relationship between the rotation
angle, ∆θ, the DOP of the nontilted object,
ρ(θ), the DOP of the tilted object, ρ(θ + ∆θ),
and the derivative of the DOP, ρ′(θ), will be:

ρ(θ + ∆θ)− ρ(θ) = ρ′(θ)∆θ , (26)
if ∆θ is sufficiently small.

In fact, the absolute value of the rotation an-
gle is not needed; however, we assume that the
rotation direction is known. Since the azimuth
angle φ has also already been determined, the
sign of ∆θ can be determined. As a result,
by calculating the sign of the difference of two
DOP values at the corresponding point and by
giving the sign of ∆θ, we can determine, by us-
ing Eq. (26), whether the zenith angle θ in the
B-B region is in the range of 0 ≤ θ ≤ θB or of
θB ≤ θ ≤ π/2 (Fig. 11).

5. Shape Estimation of Transparent
Objects by using Polarization Ray-
tracing

In this section, we introduce the proposed
method for estimating the frontal surface shape
of a transparent object using the DOP and the
POI angle as inputs under the assumption that
the refractive index and the backward-facing
surface shape are given. Details of numerical
algorithms and mathematics are shown in the
literature 26),27).

5.1 Inverse Polarization Raytracing
We denote the input polarization data as IE .

Polarization data are represented as an image
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Fig. 10 Corresponding point.

Fig. 11 Graph of derivative of DOP (n = 1.5).

(2-dimensionally distributed data) where the
DOP and POI angle are set for each pixel.
The polarizaiton raytracing explained in Sec-
tion 2.2 can render the polarization data from
the shape of a transparent object. We denote
such rendered polarization images as IR. The

shape of transparent objects is represented as
the height H, set for each pixel. Heights par-
tially differentiated by x and y are called gra-
dient, and are represented as p and q, respec-
tively:

p = Hx =
∂H

∂x
, q = Hy =

∂H

∂y
. (27)

Surface normal n = (−p,−q, 1)T is represented
by these gradients. The rendered polarization
image IR depends upon height and surface nor-
mal, so it can be represented as IR(H, p, q).
A straightforward definition of the cost function
that we want to minimize can be as follows:∫∫

E1(x, y) dx dy , (28)

where,
E1 = (IE − IR(H, p, q))2 . (29)

We will sometimes omit the variables (x, y)
in subsequent discussions for the simplicity of
descriptions. IR depends upon p, q, and H,
while p, q, and H depend upon each other with
Eq. (27). Therefore, the cost function must be
modified as follows:
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(λE1 + E2) dx dy , (30)

where,
E2 = (Hx − p)2 + (Hy − q)2 . (31)

λ is the Lagrange undetermined multiplier.
Euler equations that minimize Eq. (30) will

be,

p = Hx − λ

2
∂E1

∂p
(32)

q = Hy − λ

2
∂E1

∂q
(33)

H = H̄ − 1
4
(px + qy)− λ

8
∂E1

∂H
, (34)

where H̄ is a 4-neighbor average of H.
Each of the above Eqs. (32), (33), (34) can

be decomposed into two steps:
p← Hx (35)

p← p− λ1
∂E1

∂p
(36)

q ← Hy (37)

q ← q − λ2
∂E1

∂q
(38)

H ← H̄ − 1
4
(px + qy) (39)

H ← H − λ3
∂E1

∂H
. (40)

Here, λ1, λ2, and λ3 are scalar values that are
determined for each pixel and for each iteration
step.

First, we set initial values of the shape H
for each point of frontal surface. Next, p and
q are calculated by Eqs. (35), (37). Then, we
solve Eqs. (36), (38). λ1 and λ2 should be op-
timal values; thus, we use Brent’s method to
determine λ1 and λ2, which minimize the er-
ror function E1. After computing p and q at
every pixel, we solve Eq. (39) by the relax-
ation method 28),29) to determine the height H.
We solved the relaxation problem by using the
alternating-direction implicit method.

We do not choose to solve Eq. (40) by Brent’s
method because the error function E1 depends
upon the change of surface normal rather than
on the change of height. Another reason is that
the error function E1 smoothly changes when
the surface normal changes, but it does not
smoothly change when the height changes.

To conclude, the frontal surface shape of
a transparent object is estimated by an iter-
ative computation, where each step of iteration
solves Eqs. (35)–(39), and the iteration stops
when Eq. (28) is minimized.

6. Experiments

6.1 Experimental Setup of Visible
Light

Figure 12 represents our experimental
setup, which we named “Cocoon,” for obtain-
ing the polarization data in a visible light do-
main. The target object is set inside the center
of the plastic sphere whose diameter is 35 cm.
This plastic sphere is illuminated by 36 incan-
descent lamps. These 36 light sources are al-
most uniformly distributed spatially around the
plastic sphere by a geodesic dome. The plas-
tic sphere diffuses the light that comes from
the light sources, and it behaves like a spher-
ical light source, which illuminates from every
direction the target object that is located at
the center of the sphere. This spherical diffuser
provides an unpolarized light. The target ob-
ject is observed by a monochrome camera from
the top of the plastic sphere, which has a hole
on the top. A linear polarizer is set in front of
the camera.

6.2 Experimental Setup of Infrared
Light

Figure 13 shows the apparatus for infrared
light. Given that infrared light is thermal radi-
ation from a body and is not a reflection com-
ponent, we do not use any light source. We
increase the temperature of the object to 30–40
degrees Celsius by using a hair dryer to blow
heated air over it. We also employ an infrared
polarizer and an IR-CCD camera.

Fig. 12 Experimental setup for visible light.

Fig. 13 Experimental setup for infrared light.
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Fig. 14 Photographs of acrylic hemispherical objects.

Fig. 15 Error characteristics of the spherical object.

6.3 Experimental Results of the Ther-
mal Radiation Method

This section shows the experimental results of
the first method, which uses thermal radiation.

In order to determine the accuracy of the sys-
tem, we use an acrylic hemisphere having a re-
fractive index of 1.5 and a diameter of 50mm
shown in Fig. 14 (a). Figure 15 shows the er-
ror characteristics from the observed measure-
ment. The horizontal axis is the zenith angle
and the vertical axis denotes the measurement
errors. In the figure, the dotted straight line
denotes the case without any measurement er-
rors.

From this experiment, except around the
area of small angles, the measurement error
is small, and we can achieve high accuracy in
measurement. One of the reasons for the rela-
tively noisy data around the smaller angles is
that the spherical diffuser has a hole in its top
portion, and the object does not receive light
from that area. Another reason is that the
derivative of the DOP is close to zero where
the incident angle is near 0◦, and is less sta-
ble for determining the incident angle (zenith
angle) from the DOP. The RMS error of the
zenith angle was 5.9◦.

Next, we determined the shape of the object
shown in Fig. 16 (a). The shellfish-shaped ob-

Fig. 16 The resulting shape of the shellfish-shaped
object.

Fig. 17 A rendered image of the obtained shape of
the hemispherical object.

ject is made of acrylic and its refractive index
is 1.5. The refractive index was obtained from
the literature 30). Figure 16 (b) shows the ob-
tained shape of the object.

6.4 Experimental Results of the Dif-
ferential Geometry Method

This section shows the experimental results
of the second method, which uses differential
geometry.

First, we used an acrylic transparent hemi-
sphere whose diameter was 30 mm, shown in
Fig. 14 (b). Its refractive index was 1.5, which is
obtained from the literature 30). The resultant
shape is shown in Fig. 17. The RMS errors of
zenith angle and height were 10◦ and 1.1 mm,
respectively.

Next, we determined the shape of the bell-
shaped object shown in Fig. 7. The object was
made of acrylic and its refractive index was 1.5,
obtained from the literature 30). The diameter
(width) of the object was 24mm and the height
was 8 mm. We tilted the object approximately
8 degrees and obtained the data from two views.
Figure 18 shows the rendered image of the es-
timated shape of the object. Figure 19 illus-
trates how the estimated shape fitted the true
shape. Dots represent the obtained height and
a solid line represents the true value, which was
obtained by hand using the edge from the photo
of the object observed from the side. The error
(mean deviation) in the height was 0.4 mm.
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Fig. 18 A rendered image of the obtained shape of
the bell-shaped object.

Fig. 19 The result of the real bell-shaped object.

Fig. 20 Measurement result of transparent mountain-
shaped object: (a) Real image, (b) region seg-
mentation result, and (c) and (d) rendered im-
age.

Another transparent object shown in
Fig. 20 (a) was measured. This mountain-
shaped object was made of epoxy and its refrac-
tive index was 1.6 30). The diameter (width)
of the object was 45 mm and the height was
25mm. Figure 20 (b) shows the result of re-
gion segmentation. Here, one B-E region, one
B-N region, and four B-B regions are observed.
We rotated the object approximately 8 degrees.
Figure 20 (c) and Fig. 20 (d) represent the esti-
mated shape of the object.

The software we developed for this second
method can be divided into many functions:
Computing the DOP from images, segmenting

Fig. 21 3D hemispherical object result: (a) Initial
state, (b) Result after 10 loops.

regions, finding corresponding points, comput-
ing the zenith angle, computing height from
surface normal, and so on. Region segmen-
tation and height computation are performed
by the two most complex modules, which take
considerable time to compute. Region segmen-
tation took 6.3 [sec] with 85,980 pixels, using
a Pentium4 3.4 GHz processor. Here, we em-
ployed a simple “region growing” algorithm for
implementing the region segmentation. The
target object was the mountain-shaped ob-
ject. We computed height from surface nor-
mal by using the alternating-direction implicit
method 26) (Section 5.1), and it took 1.6 [sec]
with the same number of pixels and the same
processor. Since the first method does not need
region segmentation, the whole computation
speed is faster than the second method.

6.5 Experimental Results of the Inverse
Polarization Raytracing Method

This section shows the experimental results
of the third method, which uses polarization
raytracing.

We observed an acrylic transparent hemi-
sphere from the spherical part, whose refrac-
tive index was 1.5 and diameter was 30 mm
(Fig. 14 (b)). The frontal surface was a hemi-
sphere and the rear surface was a disk. The
camera was set orthogonally to the disk. We
assumed that the illumination distribution is
known.

The estimation result is shown in Fig. 21.
Figure 21 (a) represents the initial value. We
used the result of Saito’s method 9), the first
method (Section 3), or the second method (Sec-
tion 4). The shape of these three methods
are almost the same because all of them com-
pute the surface normal from the DOP con-
sidering only the reflection. The difference be-
tween them is only the disambiguation method.
If these methods worked perfectly for noise-
less data, the results will be exactly the same.
Here, we solved the ambiguity problem man-
ually, which is the same approach used with
Saito’s method. In the following sentences, we
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Fig. 22 Estimation result: (1a) Initial state (result
of Saito’s method), (1b)(1c) Results after
5 and 50 loops, (2a) Initial state (true shape),
(2b)(2c) Results after 5 and 50 loops.

use the term “the result of Saito’s method” to
refer to the result of these three methods. Fig-
ure 21 (b) is the result after 10 loops of the
method. The computation time was 36 [sec]
for 1 loop with 7,854 pixels using a Pentium4
3.4GHz processor. Here, the maximum num-
ber of the light rays traced is 10 reflections or
transmissions. However, if the energy of the
light ray becomes less than a certain threshold,
the tracing of the light ray is stopped.

In order to evaluate the estimation results in
more detail, another evaluation was done in the
2D plane. This was a cross-section of the 3D
object, which included the center of the base
circle and the line perpendicular to that circle.
A light ray that was inside this plane did not go
out, and a light ray that was outside this plane
did not come in. The proposed algorithm es-
timated the frontal surface shape, a semicircle,
by using the polarization data of the 2D plane
as input data.

The result of applying the proposed method
is given in Fig. 22 (1c) and Fig. 22 (2c). In
Fig. 22, the solid line represents the estimated
shape, and the dotted line represents the
true shape. For the estimated result shown
in Fig. 22 (1c), the result of Saito’s method
(Fig. 22 (1a)) is used for the initial state of
the shape. For the estimated result shown
in Fig. 22 (2c), the true shape, hemisphere
(Fig. 22 (2a)), is used for the initial state of the
shape. Figure 22 (1b)(2b) and Fig. 22 (1c)(2c)
are the result after 5 and 50 loops, respectively.
The shapes converge to the same shape even if
the initial shapes are different.

The value of the cost function (Eq. (28))
per each iteration is plotted in Fig. 23. The
vertical axis in Fig. 23 represents the value
of Eq. (28), while the horizontal axis rep-
resents the iteration number. A black dia-
mond mark is the value of the result whose
initial state is the result of Saito’s method

Fig. 23 Error for each loop: (black diamond) Re-
sult when initial value is the result of Saito’s
method, (gray square) result when initial
value is the true shape.

(Fig. 22 (1a)(1b)(1c)). A gray square mark is
the value of the result whose initial state is the
true shape (Fig. 22 (2a)(2b)(2c)). The leftmost
value is the value of the cost function of the ini-
tial state. Both the value and the shape did not
change after approximately 8 loops.

The computation time was 5.9 [sec] for 1 loop
with 320 pixels, using a Pentium4 3.4 GHz pro-
cessor. Here, the maximum number of the light
rays traced is 100 reflections or transmissions.
However, if the energy of the light ray becomes
less than a certain threshold, the tracing of the
light ray is stopped.

The RMS error between the estimated value
and the true value is used to compare the accu-
racy between the proposed method and Saito’s
method. The RMS error of the zenith angle of
the surface normal was 23◦ for Saito’s method,
9.1◦ for our method when the initial state was
the result of Saito’s method, and 8.9◦ for our
method when the initial state was the true
shape. The RMS error of the height was 2.7 mm
for Saito’s method, 0.67 mm for our method
when the initial state was the result of Saito’s
method, and 0.55 mm for our method when the
initial state was the true shape.

Next, we applied the method to the bell-
shaped transparent object shown in Fig. 7. The
object was observed from the protruding part
of the object. The frontal surface was the
curved surface and the rear surface was a disk.
The camera was set orthogonally to the disk.
We assumed that the illumination distribution
was known. We estimated the shape of the
cross-section of the object to analyze the pre-
cision of the proposed method. Figure 24
illustrates the estimated shape of the object.
The solid curve represents the obtained frontal
height, and the dotted line represents the given
rear height. The initial value was set to be
a semicircle shown in Fig. 24 (a). The estimated
shape after 1, 5, and 20 loops is illustrated in
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Fig. 24 Estimated shape of bell-shaped acrylic object
by using the inverse polarization raytracing
method: (a) initial value, (b)(c)(d) estimated
after 1, 5, and 20 loops, respectively.

Fig. 25 A photograph of the heart-shaped object.

Fig. 24 (b), (c), and (d), respectively. The true
shape is represented as a solid curve in Fig. 19.
An error (mean deviation) of the height was
0.24mm. The computation time was 7.0 [sec]
for 1 loop with 320 pixels, using a Pentium4
3.4GHz processor.

We also applied the method to the heart-
shaped transparent object shown in Fig. 25.
The object was made of glass and its refractive
index was 1.5, obtained from the literature 30).
The object was observed from the curved sur-
face of the object. The frontal surface was the
curved surface, and the rear surface was a pla-
nar surface. The camera was set orthogonally
to the rear surface. We assumed that the illu-
mination distribution was known. The estima-
tion result is shown in Fig. 26. Figure 26 (a)
represents the result of Saito’s method and, at
the same time, it represents the initial value.
Figure 26 (b) is the result after 10 loops of the
method. Figure 26 (c) is the rendered example
of the raytracing method by using the estimated
shape.

7. Discussions

7.1 Discussion of the First Method
Experimental results of the first method pro-

posed in Section 3 are shown in Section 6.3.

The method is applicable to transparent ob-
jects that have a complex shape such as shell-
like shape.

The resultant shape has some noise at the
part whose zenith angle θ is around 0◦, points
where the surface normal is heading towards
the camera. This is caused by the hole on top
of the spherical diffuser, a white plastic sphere
surrounding the target object. This hole is nec-
essary for the camera to observe the target ob-
ject. The target object is illuminated by the
spherical diffuser except for this hole. There-
fore, the surface normal heading towards the
camera is noisy because the light is not illumi-
nated at such surface points.

7.2 Discussion of the Second Method
Experimental results of the second method

proposed in Section 4 are shown in Section 6.4.
This second method, like the first method,

does not consider the influence of internal in-
terreflection, and thus provides an incorrect re-
sult.

This second method depends on the robust-
ness of the region segmentation method. Due
to the noise caused by internal interreflection,
robust region segmentation is difficult. There-
fore, this method cannot estimate the shape
of a shell-like object, because this object has
a complex shape, and region segmentation can-
not be achieved so robustly.

The purpose of the first method and the
second method is the same; they concentrate
on solving the ambiguity problem. These two
methods yield a pair of possible surface nor-
mals, whose values are the same. But although
the resultant surface normals seem to be the
same, they are not strictly the same. The first
method does not require region segmentation,
while the second method does. Therefore, the
resultant shapes differ between these methods
depending on the result of region segmentation.
In most cases, the resultant shape of the first
method is more precise than that of the second
method due to the difficulty of region segmen-
tation.

7.3 Discussion of the Third Method
Experimental results of the third method pro-

posed in Section 5 are shown in Section 6.5.
This third method requires knowledge of the

illumination distribution that surrounds the
target object. Correct illumination distribu-
tions are needed to recover the error of this sur-
face normal.

The input polarization data is polluted by
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Fig. 26 Result of heart-shaped object: (a) Initial state, (b) result after 10
loops, (c) raytraced image.

some noise due to the variation of the refractive
index inside the object or the opacity of the ob-
ject. If the variation of the refractive index and
the opacity are known, the result will be more
precise; however, such information is hard to
obtain. In order to reduce such noise, multiple
input data are needed, taken under different il-
lumination or taken from different directions.

This third method requires much computa-
tion time for iterative computation due to the
raytracing method, which takes a great deal of
computing time. The region segmentation of
the second method takes 6.3 [sec] with 85,980
pixels, while the inverse raytracing of the third
method takes 36 [sec] for 1 iteration with 7,854
pixels. Speeding up the computation will be
our future work.

If the initial shape is not appropriate, the it-
eration process will fall to a local minimum. As
for the second method, two possible shapes are
produced per one B-B region. If these two pos-
sible shapes are used as the initial shape, these
shapes converge to two different shapes; one is
correct and one is incorrect. If the initial shape
is similar to the true shape, then it will con-
verge to a correct shape, but if the initial shape
is similar to the wrong shape, which is produced
by the ambiguity of the degree of the polariza-
tion, then it will converge to an incorrect shape.
Experimental results shown in Figs. 22 and 23
tell us that the algorithm has a robust conver-
gence if the initial shape is close to the global
minimum.

In Section 6.5, the experiment results show
that the third method produces a more pre-
cise shape than those of the first and second
methods. The RMS error of the surface nor-
mal for the first and second methods was 23◦,
while that for the third method was 9.1◦, when
measuring the transparent hemisphere.

7.4 Discussion of the Result of Hemi-
sphere

We applied the three methods to an acrylic
hemispherical object, and calculated the error
value for each experiment. Section 6.3 gives the
result of the first method, Section 6.4 gives the
result of the second method, and Section 6.5
gives the result of the third method. These
data are obtained on different dates and under
different circumstances; thus, the input data is
not the same for each experiment. We cannot
compare the effectiveness of each method from
these three results. However, Section 6.5 pro-
vides a fair comparison between the three meth-
ods by analyzing the results produced by the
same input data. Section 6.5 indicates that the
error for the first and second methods was 23◦,
and the error for the third method was 9.1◦.
Therefore, we insist that the third method pro-
duces a better shape than the first and second
methods.

The error shown in Section 6.3 was 5.9◦, the
error shown in Section 6.4 was 10◦, and the er-
ror shown in Section 6.5 was 9.1◦. In Section 6.4
and Section 6.5, we used a closed hemisphere,
an object whose rear surface is a plane. In Sec-
tion 6.3, we used an open hemisphere, a thin
object whose rear surface is almost the same
shape as the frontal surface and is very close
to the frontal surface with a width of less than
0.1 mm. This open hemisphere shows less inter-
ference from the rear surface, since the surface
normal of frontal surface and the rear surface is
the same. The DOP is almost the same whether
we consider the internal interreflection or not.
Therefore, Section 6.3 provides a good result.
A closed hemisphere is much more affected by
internal interreflection. The internal interreflec-
tion causes a large error, like 23◦ as shown in
Section 6.5. In Section 6.4, we increased the
DOP value so that the maximum of the ob-
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served DOP was equal to 1, since the object
always has Brewster points and the maximum
DOP should be 1. The error decreased to 10◦,
as shown in Section 6.4. Section 6.5 consid-
ers the internal interreflection by using the po-
larization raytracing algorithm, and provides
a better result. The error was 9.1◦ as shown in
Section 6.5, which is better than 23◦. Though
the error 10◦ in Section 6.4 and the error 9.1◦ in
Section 6.5 are only slightly different, the shape
obtained by the third method (Fig. 21) looks
better than the shape obtained by the second
method (Fig. 17).

7.5 Discussion of the Three Methods
Advantages and disadvantages are listed

in Table 1. The first method analyzes the
polarization data in a visible light domain and
an infrared light domain; thus, the method
uses one visible light camera and one infrared
light camera. The second method analyzes the
polarization data obtained from two different
views; thus, the method uses two visible light
cameras, though we actually used one camera
by rotating the object. The third method an-
alyzes the polarization data obtained by one
visible light camera. The third method pro-
vides precise estimation results by considering
internal interreflections, while the first and the
second methods do not. The third method es-
timates the object’s shape by an iterative com-
putation; thus, it requires an initial value of
the object’s shape, it takes a great deal of time
to compute, and it is not so robust because it
falls to a local minimum if the initial value is
not good. The first and the second methods
do not need an initial value and do not take
so much time to compute. The second method
is not so robust because it needs region seg-
mentation, which is sensitive to noise, while
the first method is robust because it does not
need region segmentation or iterative computa-
tion. The experimental setup we used cannot
measure polarization data in real time; how-
ever, some researchers proposed real-time mea-
surement systems 34)∼36). By using such real-
time measurement equipment, the three pro-
posed systems can possibly obtain the polar-
ization data in real time. However, the first
method needs to observe the object from one
direction with two different cameras; thus, it is
difficult using this method to measure the po-
larization data in real time.

The proposed three methods have both ad-
vantages and disadvantages as listed in Table 1.

Table 1 Advantage and disadvantage of three
methods.

Method 1 Method 2 Method 3
(infrared) (geometry) (raytracing)

Camera 1 visible 2 visible 1 visible

1 infrared

Accuracy low low high

Robustness high low low

Computation time quick quick long

Possibility of NG OK OK
realtime measurement

Initial value no need no need need

Smooth surface yes yes yes
(C2) measurable?

Smooth surface yes possibly yes
(C1) measurable?

Continuous surface possibly no possibly
(C0) measurable?

Discontinuous surface no no no
measurable?

Thus, the best way to use these methods de-
pends on the individual circumstances of each
case. According to this table, examples of the
usage of these methods will be like this:
• If you need a precise shape of a transparent

object, then use the third method, which
uses the polarization raytracing method
(Section 5).

• If you need the shape of a transparent ob-
ject quickly, then use the second method,
with two cameras, which uses the differen-
tial geometrical property (Section 4).

• If you are intending to obtain the geometric
data of a complex-shaped transparent ob-
ject, and if the above two methods cannot
calculate the complex shape, then use the
first method, which uses thermal radiation
(Section 3).

However, the third method requires that the
rear surface shape is known, and the first
method cannot measure an object that deforms
with heat.

There is no doubt that we can generate a bet-
ter method by combining these three methods.
Here, we will discuss the characteristics of the
combination of the two methods chosen from
the three methods.
Method 1 & Method 2 We will have two
input data sets taken from two different views.
By applying the first method for each data
set, we will obtain two shapes. By align-
ing these two shapes, we will obtain dense
correspondences between them. The second
method produces better results by using such
dense correspondences. The shape will be im-
proved by combining the results from the first



104 IPSJ Transactions on Computer Vision and Image Media June 2006

method and the second method.
Method 1 & Method 3 Thermal radiation
is emitted from the frontal surface, and is sub-
ject to less interference by internal interreflec-
tion. Analyzing only the thermal radiation pro-
vides the true shape of the frontal surface if
there is no noise in the input data. If we have
a true shape of the frontal surface, the third
method can possibly estimate the rear surface,
overcoming the problem that the rear surface
shape cannot be estimated. However, we have
not checked the convergence for this case. If the
rear surface shape is given, the third method
produces more precise shape by considering the
input data from both reflection and thermal ra-
diation.
Method 2 & Method 3 By using two input
data sets taken from two different views, the
third method can possibly estimate both the
frontal surface shape and the rear surface shape.
However, we have not checked the convergence
for this case. We can use the two shapes pro-
duced by the second method as initial values
for the third method. The third method im-
proves these two shapes. From the dense cor-
respondences between these two shapes, the
second method can check and modify the dis-
ambiguation results. We will obtain a precise
shape from the third method by combining both
shapes.

8. Conclusion

8.1 Summary
In this paper, we have proposed three meth-

ods for determining the shape of a transpar-
ent object by using a polarization filter. An
algorithm that uses only one view in a visible
light domain results in ambiguities. The first
method solves this ambiguity problem by em-
ploying polarization in an infrared light domain,
and the second method solves it by employing
polarization of a slightly tilted view. These two
methods still have a problem in that they do
not consider the internal interreflection. The
third method solves this internal interreflection
problem by employing the polarization raytrac-
ing algorithm. The ambiguity problem and the
polarization raytracing algorithm are presented
in Section 2.
First method 31) Thermal radiation, which
also has characteristics of polarization, can be
observed as infrared light. This polarization is
a one-valued function; measuring the degree of
polarization in an infrared domain provides the

unique zenith angle. However, the degree of po-
larization is relatively low, and in some cases it
is difficult to determine the degree of polariza-
tion precisely. Therefore, we propose to use
polarization in both visible and infrared light.
This method is presented in Section 3.
Second method 32) By rotating the object,
the ambiguity problem can be also solved. Two
sets of data are obtained: one is from the object
not tilted, and the other is from the object tilted
at a small angle. These data are segmented
into regions with regard to the Brewster an-
gle. Then, the method calculates the difference
of the degree of polarization between these two
sets of data at the corresponding point — the
point where surface normal lies along the rota-
tion direction and where the degree of polariza-
tion is minimum in the B-B region. From that
difference, the correct surface normal is deter-
mined. This method is presented in Section 4.
Third method 33) Solving the inverse prob-
lem of the polarization raytracing method, the
shape of transparent objects can be estimated
more precisely. The polarization raytracing
method considers internal interreflection. To
obtain the shape of a transparent object, the
method minimizes the difference between the
input polarization data taken by observing the
transparent object and the computed polariza-
tion data rendered by the polarization raytrac-
ing method. This method is presented in Sec-
tion 5.

We have implemented these proposed meth-
ods, and demonstrated their abilities to deter-
mine the shape of transparent objects. Experi-
ments are presented in Section 6.

8.2 Future Work
Our future work is to obtain the shapes of

transparent objects more accurately. We also
intend to develop a method that can measure
the refractive index at the same time as well
as the surface shape of transparent object. We
have developed a polarization camera 37), which
measures the polarization state of the light, and
we are now trying to improve it so that it can
measure at a faster speed than the existing real-
time polarization camera 34)∼36). Another fu-
ture work is to develop a commercial product
for measuring the shape of transparent objects
by collaborating with a camera manufacturer.
We are also planning to collaborate with physi-
cists to make our methods more robust by using
their specialized knowledge.

There are many beautiful glass objects of art
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in all over the world. The proposed method
will be useful for modeling such glass objects
of art. Other application fields that can ben-
efit from the modeling of transparent objects
might include computer-aided manufacturing,
classifying garbage/rubbish for recycling glass
and plastic bottles, and creating 3D catalogs
for online shopping. As the first step for such
a wide area of applications, we proposed a ba-
sic technique for modeling the surface shape of
transparent objects.
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