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Abstract

Photometric stereo is a method which estimates sur-
face normal from object’s shading. Uncalibrated photo-
metric stereo is the photometric stereo where the light
source direction is unknown. Uncalibrated photometric
stereo which estimates both light source direction and
surface normal is an ill-posed problem, and has ambi-
guity for solving the problem. In order to uniquely de-
termine the solution, constraints should be added. Two
constraints we use are the intrinsic image which repre-
sents the albedo (diffuse reflectance) and the guide nor-
mal which represents the approximate shape of the ob-
ject. Estimation of albedo requires both the normal and
the light direction to be known, but both are unknown in
our situation. Our method employs the idea of intrin-
sic image decomposition, and estimates the reflectance
solely from input image sequence. In addition, we esti-
mate the approximate shape from images without using
other sensors such as laser range sensor. This paper
reveals that the uncalibrated photometric stereo can be
solved by these two constraints.

1 Introduction

Uncalibrated photometric stereo which allows the
light source directions to be unknown has ambiguity
in uniquely determining the solution. In order to solve
the problem, we use the intrinsic reflectance image and
approximate normal as the constraints.

Shading is consisted of albedo (diffuse reflectance),
surface normal, and light source direction. The albedo,
the surface normal, and the light direction (of infinite-
far point light source) are all unknown in our situation
(Figure 1). In order to solve the problem, we constrain
the albedo and the normal. The approximate estimate
of albedo is calculated solely from input images using
the idea employed in the field of intrinsic image de-
composition. The approximate estimate of normal is
calculated solely from input images using the silhou-
ette of object region. However, these two estimates are
not that correct. In order to survive this severe situa-
tion, we use the framework of uncalibrated photometric
stereo, which works stably for this severe situation.

Figure 1. Uncalibrated photometric stereo con-
strained by intrinsic reflectance image and shape
from silhoutte.

2 Related works

The photometric stereo under the condition that the
light source direction is unknown is called uncalibrated
photometric stereo [25, 10, 28, 1, 4, 19, 3, 18, 6, 9, 5,
1, 29, 7, 27].

Generally, uncalibrated photometric stereo has a
problem that it is sensitive to outliers such as spec-
ular reflection and shadow. Photometric linearization
[17, 23, 20, 26, 11, 16, 15, 22, 11] is useful to be applied a
priori. Photometric linearization is out of scope of this
paper, thus we do not treat with this problem but we
use these techniques as preprocessing of our method.

Intrinsic image decomposition [13, 2, 12, 21, 8, 24,
14] is an method which decomposes an image into two
intrinsic images which represent illumination and re-
flectance (Figure 2). It is an ill-posed problem to both
estimate the illumination environment and the object
shape under the condition that both are unknown. In
most cases, it is solved by adding an assumption de-
rived from the statistical property of images. We bor-
row the idea examined in the field of intrinsic image
decomposition, and apply the modified version of the
idea so that it can be applied to uncalibrated photo-
metric stereo.

Hayakawa [10] proved that uncalibrated photomet-
ric stereo can be solved if the albedo of the object (or



the brightness of light source) is uniform. Corollary
4.1 given by Belhumeur et al. [4] also proved this fact.
In order to treat with objects with multiple albedos,
we calculate the intrinsic image which represents the
albedo. Proposed method cancels the albedo at the
first stage of the algorithm, which increases the ro-
bustness of our method since the succeeding processes
becomes simple.

3 Uncalibrated photometric stereo

3.1 Lambert reflection

Under the condition that the object obeys the Lam-
bertian reflection model and the light source is an
infinite-far single light, the observed brightness i can
be represented as follows.

i = s · l , (1)

where the vector s = (sx, sy, sz)
� is called surface vec-

tor and the unit vector l = (lx, ly, lz)
� is called light

vector. Surface vector s is a product of albedo and nor-
mal vector. Light vector l represents the light source
direction.

Since s · l might become negative, Equation (1) is
usually formulated as i = max(s · l, 0). However, the
photometric linearization [17, 23, 20, 26, 11, 16, 15]
forces the images to obey Equation (1). The photo-
metric linearization is applied to the captured images,
and such images are used as inputs of our method. Re-
cent methods often use LASSO [22, 11] but any other
equivalent methods can be used. We employ the robust
SVD [23, 20, 16, 15] in this work.

Following shows the P × 3 surface matrix which is a
concatenation of surface vectors and the 3×F light ma-
trix L which is a concatenation of light vectors, where
P represents the number of pixels and F represents the
number of images.

S =

⎛
⎜⎜⎝

s1x s1y s1z
s2x s2y s2z
...

...
...

sPx sPy sPz

⎞
⎟⎟⎠ , (2)

L =

(
lx1 lx2 . . . lxF
ly1 ly2 . . . lyF
lz1 lz2 . . . lzF

)
. (3)

Input data is represented by following matrix I.

I = SL =

⎛
⎜⎜⎝

i11 i12 . . . i1F
i21 i22 . . . i2F
...

...
. . .

...
iP1 iP2 . . . iPF

⎞
⎟⎟⎠ . (4)

Since the rank of both the surface matrix S and the
light matrix L are 3, Equation (4) implies that the rank
of the matrix I is also 3.

Figure 2. Intrinsic image decomposition.

3.2 Estimate of albedo

As is shown in Figure 1, the problem can be hinted
by an expected albedo. Our method does not require
additional sensors, thus we use the idea of intrinsic im-
age decomposition (Figure 2) in order to estimate the
albedo solely from images. Among various approaches
in intrinsic image decompositions, our method employs
the assumption that the albedo is constant except for
the edges where the albedo might change.

First, we calculate the average image a which is the
average of F number of images if . The shade and
shadow are decreased since the average image repre-
sents the image which is illuminated by multiple lights,
and thus it is useful to be used as a hint to calculate
the albedo.

Small amount of shading effect remains in the aver-
age image a, thus we apply bilateral filter to the average
image a in order to obtain the estimate of the albedo
â. Bilateral filter is an edge-preserved smoothing filter,
and thus it can be used to calculate the hypothesis to
the albedo.

The obtained albedo is similar to the true albedo
but is not exactly true. In order to estimate the sur-
face normal robustly, we use the framework of uncal-
ibrated photometric stereo in the subsequent sections
since the uncalibrated photometric stereo is a powerful
tool which can estimate the surface normal even under
the severe condition we treat with.

3.3 Singular value decomposition

Intrinsic illumination image can be obtained by di-
viding an input image by an albedo (Figure 2). This
paper denotes intrinsic illumination image as shading
image. Shading image îpf is calculated as follows,
where the pixel brightness of the f -th image and the
p-th pixel is represented as ipf .

îpf =
ipf
âp

. (5)

Note that Equation (5) is calculated only when the
estimated albedo âp is larger than the threshold Ta.

âp > Ta . (6)



Suppose that the number of pixels which satisfies Equa-
tion (6) is P̂ . We call the following matrix Î image ma-
trix, where the pixels of the shading image is located
vertically and the images are located horizontally.

Î =

⎛
⎜⎜⎜⎝

î11 î12 . . . î1F
î21 î22 . . . î2F
...

...
. . .

...

îP̂1 îP̂2 . . . îP̂F

⎞
⎟⎟⎟⎠ . (7)

We apply the SVD (singular value decomposition)
to the image matrix.

Î = UWV� . (8)

The rank of image matrix Î is 3. Extracting three com-
ponents from P̂ ×F left singular matrix U, F ×F sin-
gular value matrix W, F ×F right singular matrix V�

results in P̂ × 3, 3 × 3, 3 × F matrices U′, W′, V′�,
respectively.

I = U′W′V′� . (9)

Below shows the definition of pseudo surface matrix S′
and pseudo light matrix L′.

S′ = U′ , L′ = W′V′� . (10)

These matrices S′ and L′ are not the true surface
matrix and the true light matrix. We have to disam-
biguate an ambiguity exists among S′ and L′, which
is represented as matrix A, in order to uniquely de-
termine the true surface matrix S and the true light
matrix L. The ambiguity matrix A is 3 × 3 regular
matrix which is shown below.

S = S′A , L = A−1L′ . (11)

3.4 Constant albedo constraint

Input image divided by albedo becomes the shad-
ing image, thus albedo is constant in shading image.
Therefore, we solve the ambiguity matrix A using the
constraint which forces the albedo to be constant. In
other words, the reason why we have divided the albedo
from input images in Section 3.2 is that we can add the
constraint to force the albedo to be constant.

The true surface vector sp can be obtained by mul-
tiplying the pseudo surface vector s′p by the ambiguity
matrix A.

s�p = s′�p A . (12)

The norm of surface vector represents the square of
albedo, namely, s�p sp or s′�p AA�s′p. We define sym-
metrical matrix B as follows.

B = AA� =

(
b1 b4 b6
b4 b2 b5
b6 b5 b3

)
. (13)

Constraint condition that enforces the squared albedo
to be one is represented as follows.

s′�p Bs′p = 1 . (14)

Equation (14) can be reformulated as follows.(
s′2xp s′2yp s′2zp 2s′xps

′
yp 2s′yps

′
zp 2s′zps

′
xp

) ·
( b1 b2 b3 b4 b5 b6 )

�
= 1 . (15)

We concatenate Equation (15) for P̂ numbers of pixels
and form the following equation.

Cb = 1 , (16)

C =

⎛
⎜⎜⎜⎝

s′2x1 s′2y1 . . . 2s′z1s
′
x1

s′2x2 s′2y2 . . . 2s′z2s
′
x2

...
...

. . .
...

s′2
xP̂

s′2
yP̂

. . . 2s′
zP̂

s′
xP̂

⎞
⎟⎟⎟⎠ ,

b = ( b1 b2 . . . b6 )
�

,

1 = ( 1 1 . . . 1 )
�

.

Solving the above produces b.

b = C+1 . (17)

The symmetrical matrix B is re-arranged by Equation
(13) from b. SVD of B is formulated as follows since
it is a symmetrical matrix.

B = UBWBU
�
B . (18)

As a result, the ambiguity matrix A is calculated as
follows from the symmetrical matrix B.

A = UBW
1/2
B . (19)

We update the pseudo surface matrix S′ and the
light matrix L′ as follows using this ambiguity matrix
A.

S′′ = S′A , L′′ = A−1L′ . (20)

However, still there is an ambiguity, and the remaining
ambiguity can be represented as the following orthog-
onal matrix R.

S = S′′R , L = R�L′′ . (21)

3.5 Constraints using guide normal

Suppose that we have detected the pixel positions
of the object boundary in the image plane (Figure 3).
Some algorithm may conjecture the approximate shape
of the object from the silhouette obtained from a single
image. The details of this shape is far from the true
shape, however, it is approximately similar to the true
shape. We denote such shape obtained from silhouette



Figure 3. Approximate shape obtained from sil-
houette.

Figure 4. Constraint using guide normal.

as guide normal in this paper. We disambiguate Equa-
tion (21) using this guide normal. The algorithm to
calculate guide normal used in this paper is quite dif-
ferent from other existing methods, however, we skip
to explain it since it is a combination of existing tech-
niques developed in the field of image processing. Since
the guide normal can be obtained solely from the im-
ages, we do not need any other sensors such as laser
range sensor.

Since the guide normal is different from true nor-
mal, it is still difficult to obtain the true normal. The
framework of uncalibrated photometric stereo works ef-
fectively in this difficult situation: The guide normal
is used solely as the constraint with three degree-of-
freedom (Equation (21)), which means that only the
approximate shape is constrained by the guide normal
while the details of the shape is preserved (Figure 4).

Denoting the guide normal matrix as S̃, the relation
between the updated pseudo surface matrix S′′ and the
ambiguity orthogonal matrix R can be represented as
follows.

S̃ = S′′R . (22)

As a result, R is obtained.

R = S′′+S̃ . (23)

After that, we orthogonalize R and obtain the orthog-
onal matrix R̃. Finally, we obtain the surface matrix
and the light matrix as follows.

S = S′′R̃ , L = R̃�L′′ . (24)

Figure 5. Experimental result [sphere, simula-
tion]: (a) Lighting condition, (b) synthesized
sphere, and (c)–(e) estimation error of surface
normal. (c) Result if normal constraint is not
used, (d) result if albedo constraint is not used,
and (e) our method.

Figure 6. Experimental result [sphere, real]: (a)
Real sphere, and (b) estimation error of surface
normal.

Although we have obtained P̂ numbers of pixels
which satisfies Equation (6), we have not yet obtained
P numbers of pixels of the whole image. Therefore,
we again calculate the surface matrix S from the light
matrix L.

4 Experimental results

We capture multiple images under different position
of single light source, while the camera and the target
object are fixed. Additional sensors are not required.

First of all, we show the results applied to a sphere,
since the true surface normal of sphere can be ideally
calculated thus it is adequate for evaluation. Figure 5
(b) is one of the input image of the ideal sphere synthe-
sized under the light direction shown in Figure 5 (a).
Our method (Figure 5 (e)) use both the surface nor-
mal constraint (Section 3.5) and the albedo constraint



Figure 7. Experimental result [buddha]: (a) Tar-
get object, (b) estimated intrinsic image (re-
flectance), (c) estimation error, (d) guide normal,
(e) estimated normal, and (f) rendering example.

(Section 3.2). Figure 5 (e) shows the estimation error
of surface normal, whose average error is 0.105 [rad]. If
we do not use the guide normal, the error is quite large
which is 1.58 [rad], as is shown in Figure 5 (c). The
error if we do not use the guide albedo is 0.110 [rad],
and the error is nonuniform affected by the albedo dif-
ference as is shown in Figure 5 (d). Figure 6 (b) is the
result of the real sphere (Figure 6 (a)), and its average
error is 0.152 [rad]. While the error of the calibrated
photometric stereo distorts the shape locally, the er-
ror of the uncalibrated photometric stereo distorts the
shape globally.

The results of buddha object and cat object are
shown in Figures 7 and 8, respectively. Either has
multiple albedos, and thus these objects are difficult
to treat with uncalibrated photometric stereo. In Fig-
ures 7–8, (a), (b), (c), (d), (e), and (f) represent the
target object, the guide albedo, the estimation error,
the guide normal, the surface normal obtained by our
method, and the rendering example. As for calculating
the estimation error (Figure 7 (c) and Figure 8 (c)), the
surface normal calculated by conventional photometric
stereo (calibrated photometric stereo) is used as the
ground truth. Compared to the guide normal whose
details are not reproduced, our method reproduces the
details of the shape.

5 Conclusion

We proposed an uncalibrated photometric stereo
which use intrinsic image which represents the albedo
and guide normal which represents the approximated
shape as constraints. Without using any other sensors

Figure 8. Experimental result [cat]: (a) Tar-
get object, (b) estimated intrinsic image (re-
flectance), (c) estimation error, (d) guide normal,
(e) estimated normal, and (f) rendering example.

such as laser range sensors, we calculated the hypoth-
esized albedo and normal solely from image sequences.
We have verified not only theoretically but also ex-
perimentally that these two constraints can solve the
problem of uncalibrated photometric stereo.
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