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Abstract. This paper proposes a method to estimate the surface normal of concave objects. The target object of our7

method has specular surface without diffuse reflection. We solve the problem by analyzing the polarization state of8

the reflected light. The polarization analysis gives a constraint to the surface normal. However, polarization data from9

a single view has an ambiguity, and cannot uniquely determine the surface normal. In order to solve this problem, the10

target object should be observed from two or more views. However, the polarization of the light should be analyzed11

at the same surface point through different views. It means that both the camera parameters and the surface shape12

should be known. The camera parameters can be estimated a-priori using known corresponding points. However, it13

is a contradiction that the shape should be known in order to estimate the shape. In order to get out of a tough spot,14

we assume that the target object is almost planar. Under this assumption, the surface normal of the object is uniquely15

determined. This paper shows that the surface normal of the non-planar part can be also estimated using the proposed16

method.17
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1 Introduction20

Factories in industrial field have a high demand to estimate the shape of crack since it is quite21

important for quality control of the products. Although there are many methods which detect22

cracks,1 little method have been proposed for estimating the shape of cracks. Therefore, there is23

a great demand for estimating the shape of concave objects of highly specular surfaces, since it24

is a challenging task. This paper proposes a method which estimates the surface normal of black25

specular object with concave shape, by analyzing the polariztion state of the reflected light, where26

the target object is observed from multiple views.27

3D modeling techniques have been intensively investigated in the field of computer vision. The28

techniques used can be categorized into two types, the geometric approach and the photometric29

approach. Geometric approach uses the geometrical structure of the scene, such as time-of-flight30
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laser range sensor, multinocular stereo, or structured light projection. Photometric approach uses31

the light reflected from the scene, such as photometric stereo or shape-from-polarization. Shape-32

from-specularity has been extensively surveyed by Ihrke et al.233

A smooth surface normal can be obtained using a photometric approach. Polarization3–5 is34

one of the photometric clue that can be used to obtain a smooth surface normal. Koshikawa and35

Shirai6 used circular polarization to estimate the surface normal of a specular object. Guarnera36

et al.7 extended their method to determine the surface normal uniquely, by changing the lighting37

conditions in two configurations. Morel et al.8 also disambiguated it using multiple illumination;38

however, they did not solve the ambiguity of the degree of polarization (DOP)3–5 because they did39

not use circular polarization. Saito et al.9 proposed the basic theory for estimating the surface40

normal of a transparent object using polarization. Barbour10 approximated the relation between41

the surface normal and the DOP and developed a commercial sensor for shape-from-polarization.42

Kobayashi et al.11 estimated the surface normal of transparent thin objects using DOP. They also43

estimated the thickness by analyzing the light interference. Miyazaki et al.12 estimated the surface44

normal of a transparent object by analyzing the polarization state of the thermal radiation from the45

object. Miyazaki et al.13 attempted to estimate the surface normal of a diffuse object from a single46

view. Miyazaki et al.14 used a geometrical invariant to match the corresponding points from two47

views to estimate the surface normal of a transparent object. Miyazaki and Ikeuchi15 solved the48

inverse problem of polarization ray tracing to estimate the surface normal of a transparent object.49

These methods first calculate the polarization data from input images, while Yu et al.16 used the50

input images themselves to estimate the surface normal without explicitly calculating the DOP.51

Wolff and Boult17 developed the basic theory for showing that polarization analysis can es-52

timate a surface normal from two views if the corresponding points are known. Rahmann and53
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Canterakis18 estimated the surface normal of a specular object from multiple views by iteratively54

finding the corresponding points of these views. Rahmann19 proved that only the quadratic sur-55

faces are estimated if the corresponding points are searched iteratively. Atkinson and Hancock20
56

analyzed the local structure of an object to find the corresponding points between two viewpoints57

in order to calculate the surface normal from the polarization of two views. Atkinson and Han-58

cock21 also provided a detailed investigation of surface normal estimation for a diffuse object from59

a single view. Huynh et al.22 estimated not only the surface normal but also the refractive index.60

Kadambi et al.23 combined the 3D geometry obtained by a time-of-flight (ToF) sensor and61

the surface normal obtained from the DOP. Smith et al.24 combined the depth sensor and the62

shape-from-polarization. Cui et al.25 used structre-from-motion while Yang et al.26 used SLAM63

in addition to the shape-from-polarization. Miyazaki et al.27 combined the visual hull and the64

shape-from-polarization.65

In this study, we propose a method for creating a 3D model using both polarization analysis66

and planarity assumption. The principal target objects are smooth surfaces with high specular re-67

flection and low diffuse reflection which are annoying targets in conventional techniques. We first68

calibrate multiple cameras to calculate the geometrical relationships among them. We observe the69

object from multiple viewpoints using a polarization imaging camera. In order to determine the70

corresponding point among multiple views, we assume the target object as planar. However, this71

assumption solely can simply produce a planar shape, thus we additionally use polarization infor-72

mation in order to estimate the non-planar part of the object. The shape-from-polarization method73

can estimate the shape of black objects with high specularity, which cannot be estimated using74

the photometric stereo method because there are no diffuse reflections. The polarization informa-75

tion of the object is obtained from multiple viewpoints using a polarization imaging camera. The76
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Fig 1 Our contribution: (a) Previous method which is based on visual hull which is not suited to estimate planar shapes
and (b) proposed method which is suited to estimate concave shapes which is almost planar.

polarization data must be analyzed at identical points on the object surface when observed from77

multiple viewpoints; thus, the planarity assumption can be used for estimating the surface normal78

from polarization data. The target object of our method is almost planar except for a crack with79

small size.80

Miyazaki’s method27 relies on the visual hull. It is difficult to estimate a planar shape using81

visual hull, and in addition, it is impossible to estimate a planar shape with infinite size (Fig. 182

(a)). Our method can also be applied to infinite plane (Fig. 1 (b)), thus, our method overcomes the83

disadvantage of their method,27 which means that the proposed method is fundamentally superior84

than their method27 if the target object is almost planar.85

We describe our method in Section 2 and present our results in Section 3. The theory shown86

in Section 2 assumes that the target object must be completely planar. However, Section 3 empri-87

cally proves that our method can successfully estimate the surface normal even if the object is not88

completely planar. We discuss the advantages and disadvantages of our method and conclude the89
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paper in Section 4.90

2 Using polarization in estimating the surface normal of concave objects91

2.1 Algorithm flow92

First, we explain the flow of our method (Fig. 2).93

Since we observe the target object from multiple viewpoints, we calibrate each viewpoint in94

order to obtain each camera parameter. Although any calibration pattern works well, this paper95

assumes that each camera is calibrated using four points marked at the vertices of square for clarity.96

The area which is surrounded by these markers is the target area. Using these markers, we estimate97

the homography H (Section 2.6) and rotation R (Section 2.5). Fig. 3 shows the homographic98

projection from each view to canonical square. Canonical square can be any square defined by the99

engineer.100

Polarization camera captures the azimuth angle φ of the target object (Section 2.2). We denote101

the 90◦ rotation of φ as vector a, which would be orthogonal to surface normal (Section 2.3). Using102

the vector a and rotation matrix R of camera parameter, surface normal n is calculated using SVD103

(singular value decomposition) (Section 2.4).104

Finally, surface normal is integrated to height field.15
105

2.2 Polarization106

We explain only linear polarization since circular polarization is not related to our method. Light is107

an electromagnetic wave, and electromagnetic wave oscillating in only one direction is said to have108

perfectly linear polarization, while electromagnetic wave oscillating isotropically in all directions109

is called unpolarized light. The intermediate state of such light is called partially polarized light.110
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Fig 2 Algorithm flow.

Fig 3 Transformation to canonical square.
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Fig 4 Polar coordinates of surface normal.

DOP (degree of polarization)3–5 is one of the metrics used to represent the polarization state of111

light. Its value varies from 0 to 1, with 1 representing perfectly polarized light and 0 representing112

unpolarized light.113

The maximum light observed while rotating the polarizer is denoted as Imax, and the minimum114

light is denoted as Imin. In this paper, the polarizer angle at which Imin is observed is called the115

azimuth angle φ. The surface normal is represented in polar coordinates, where the azimuth angle116

is denoted as φ and the zenith angle is denoted as θ (Fig.4). The azimuth angle calculated from117

the polarization has 180◦-ambiguity since linear polarizer has 180◦ cycle. Thus, the azimuth angle118

of the surface normal will be either φ or φ + 180◦. The plane consisting of the incident light and119

surface normal vectors is called the reflection plane. The reflected light vector is also coplanar120

with the reflection plane since the surface is optically smooth. The orientation of the reflection121

plane is the same as the azimuth angle φ and φ+ 180◦, which is defined on a certain xy-plane and122

is defined as an angle between x-axis and the reflection plane projected on xy-plane. Since we123

capture images with a camera, the x-axis and the y-axis of the image coordinates is used.124
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Fig 5 Relationship between the surface normal and the reflection plane when observed from a single viewpoint.

2.3 Calculating the surface normal from two viewpoints125

Section 2.2 described the relationship between the surface normal and the azimuth angle obtained126

from polarization. However, we cannot determine the surface normal uniquely because only the127

orientation of the reflection plane including the surface normal is obtained. We must observe the128

object from two viewpoints to solve this problem.129

Fig. 5 represents the situation of our problem. A camera has its coordinate system x-axis, y-130

axis, and z-axis. Camera’s z-axis is along the optical axis. The reflection plane angle φ is the angle131

between the x-axis of camera coordinate system and the line caused by the intersection between132

the reflection plane and the xy-plane.133

We analyze the two reflection plane angles at the same surface point, corresponding to the

known 3D geometry. Our method assumes that the 3D geometry of the target object is almost

a plane. The relationship between the surface normal vector and the azimuth angle is shown in

Fig. 6. The relationship between the azimuth angles for each of the cameras, represented as φ1 and
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Fig 6 Relationship between the surface normal and the reflection plane when observed from two viewpoints.

φ2, and the normal vector of the reflection plane, represented as a1 and a2, is shown in Eq. (1).

a1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

cos(φ1 + 90◦)

sin(φ1 + 90◦)

0

⎞
⎟⎟⎟⎟⎟⎟⎠

, a2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

cos(φ2 + 90◦)

sin(φ2 + 90◦)

0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (1)

As shown in Fig. 6, the surface normal n is orthogonal to the vectors a1 and a2. After projecting134

the vectors a1 and a2 to the world coordinate system, we can calculate the surface normal n.135

The rotation matrix projecting the world coordinate system to each camera coordinate system is136

represented as R1 and R2. The inverse of each of these rotation matrices is its transpose, and137

they project back from the camera coordinate system to the world coordinate system. Thus, this138

situation is represented as Eq. (2).139

⎛
⎜⎜⎜⎜⎜⎜⎝

a�
1 R1

a�
2 R2

0�

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

nx

ny

nz

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (2)

Namely, the world coordinate of a1 and a2 are R�
1 a1 and R�

2 a2. Since R�
1 a1 and R�

2 a2 are140

orthogonal to the surface normal n, (R�
1 a1) ·n = 0 and (R�

2 a2) ·n = 0 hold. These formulae can141
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Fig 7 Relationship between the surface normal and the azimuth angle observed from multiple viewpoints.

be expressed, in orther form, as a�
1 R1n = 0 and a�

2 R2n = 0 (Eq. (2)).142

2.4 Calculating the surface normal from multiple viewpoints143

This section explains the estimation process for the surface normal from the azimuth angle obtained144

from multiple viewpoints.145

Fig. 7 shows the relationship between the surface normal n of the surface point p and the146

azimuth angle obtained from K viewpoints. In Fig. 7, φk represents the azimuth angle of the147

surface point p observed by the camera k = (1, 2, · · · , K), and ak represents the vector orthogonal148

to the reflection plane under the coordinate system of the camera k.149

The rotation matrix Rk represents the transformation from the world coordinate system to the
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local coordinate system of the camera indicated by k. Similar to Eq. (2), Eq. (3) or Eq. (4) holds.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a�
1 R1

a�
2 R2

...

a�
KRK

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

nx

ny

nz

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3)

or in other form,

An = 0 . (4)

The surface normal n, which satisfies Eq. (4) in the least-squares sense, can be estimated

using SVD (singular value decomposition).28 The K×3 matrix A can be decomposed by SVD as

follows. ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a�
1 R1

a�
2 R2

...

a�
KRK

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= UWV� = U

⎛
⎜⎜⎜⎜⎜⎜⎝

w1

w2

0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

v1

v2

v3

⎞
⎟⎟⎟⎟⎟⎟⎠

. (5)

Here, U is a K×3 orthogonal matrix, W is a 3×3 diagonal matrix with non-negative values, and150

V� is a 3×3 orthogonal matrix. The diagonal element wi of the matrix W is the singular value of151

the matrix A and the singular vector corresponding to wi is vi. Owing to the relationship between152

the surface normal and the reflection planes, the rank of the matrix A is at most 2; thus, one of the153

three singular values becomes 0. Please see Miyazaki27 for the proof. The surface normal n can154

be represented as Eq. (6),28 which can be calculated from the singular vector that has the smallest155
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singular value, namely, the third row of V� in Eq. (5).156

n = sv�
3 . (6)

In general, s is an arbitrary scalar coefficient; however, since the surface normal and the singular157

vectors are normalized vectors, s would be either +1 or −1. Whether s be positive or negative is158

determined so that the surface normal faces toward the camera. The surface normal estimated by159

Eq. (6) is the optimal value that minimizes the squared error of Eq. (4) formulated by K equations.160

The input data must be obtained from two or more viewpoints since the rank of the matrix A is 2.161

2.5 Camera parameters162

Eq. (3) or Eq. (4) calculates the surface normal from the azimuth angle under multiple viewpoints.163

In order to solve Eq. (4), the azimuth angle should be analyzed at corresponding points among164

multiple viewpoints. The corresponding points are determined by homography as shown in Section165

2.6. Eq. (4) also requires the rotation matrices of each camera. Namely, the extrinsic parameter of166

each camera should be known.167

Our paper represents the projection from 3D vertex (X, Y, Z) to 2D vertex (x, y) as Eq. (7).29
168

⎛
⎜⎜⎜⎜⎜⎜⎝

x

y

1

⎞
⎟⎟⎟⎟⎟⎟⎠

∼

⎛
⎜⎜⎜⎜⎜⎜⎝

f 0 0

0 f 0

0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X

Y

Z

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (7)

In Eq. (7), we skip to describe the camera center parameter (Cx, Cy) for clarity, since we assume169
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pinhole camera model. We skip to explain the detailed implementation to estimate these parameters170

f, t1, t2, t3, r11, r12, · · · , r33.171

2.6 Homography transform172

Homography is a projection from a certain quadrangle to another certain quadrangle represented173

under the homographic projection. Homography represents one-to-one correspondence between174

two planes without redundancy nor lack of information. Therefore, it is natural to use homography175

in our work since the target object is almost planar.176

Homogeneous coordinate is defined as follows using (ξ1, ξ2, ξ3) (ξ3 �= 0), where one element

is added to the coordinates (x′, y′).

x′ =
ξ1
ξ3

, y′ =
ξ2
ξ3

. (8)

Homographic projection from a certain quadrangle (x, y) to another certain quandrangle (x′, y′)177

can be represented as follows.178

⎛
⎜⎜⎜⎜⎜⎜⎝

x′

y′

1

⎞
⎟⎟⎟⎟⎟⎟⎠

∼

⎛
⎜⎜⎜⎜⎜⎜⎝

ξ1

ξ2

ξ3

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

h11 h12 h13

h21 h22 h23

h31 h32 h33

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

x

y

1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (9)

Namely, homographic projection is represented by homography matrix h11, h12, · · · , h33. Point179
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Fig 8 Homographic projection from a certain quadrangle to another certain quadrangle.

(x, y) is projected to the point (x′, y′) = (ξ1/ξ3, ξ2/ξ3) by this homography matrix.180

x′ =
h11x+ h12y + h13

h31x+ h32y + h33

, (10)

181

y′ =
h21x+ h22y + h23

h31x+ h32y + h33

. (11)

Fig. 8 is an example where vertices of quadrangle (x1, y1), (x2, y2), (x3, y3), and (x4, y4) cor-182

respond to vertices of quadrangle (x′
1, y

′
1), (x

′
2, y

′
2), (x

′
3, y

′
3), and (x′

4, y
′
4).183

Scaling the 3×3 homography matrix h11, h12, . . . , h33 results in same transformation, thus, we184

fix one element as follows in order to uniquely determine the homography matrix.185

h33 = 1 . (12)
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Substituting the above equation into Eqs. (10)–(11) results in Eqs. (13)–(14).186

xh11 + yh12 + h13 − xx′h31 − yx′h32 = x′ , (13)

187

xh21 + yh22 + h23 − xy′h31 − yy′h32 = y′ . (14)

Concatenating Eqs. (13)–(14) for four vertices results in Eq. (15).188

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1 y1 1 0 0 0 −x1x
′
1 −y1x

′
1

0 0 0 x1 y1 1 −x1y
′
1 −y1y

′
1

x2 y2 1 0 0 0 −x2x
′
2 −y2x

′
2

0 0 0 x2 y2 1 −x2y
′
2 −y2y

′
2

x3 y3 1 0 0 0 −x3x
′
3 −y3x

′
3

0 0 0 x3 y3 1 −x3y
′
3 −y3y

′
3

x4 y4 1 0 0 0 −x4x
′
4 −y4x

′
4

0 0 0 x4 y4 1 −x4y
′
4 −y4y

′
4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h11

h12

h13

h21

h22

h23

h31

h32

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x′
1

y′1

x′
2

y′2

x′
3

y′3

x′
4

y′4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(15)

Since we have 8 unknowns (h11, h12, . . . , h32) and 8 equations (8 rows of the leftmost matrix in189
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Eq. (15)), closed-form solution exists. Solving this results in homography matrix shown below190

H =

⎛
⎜⎜⎜⎜⎜⎜⎝

h11 h12 h13

h21 h22 h23

h31 h32 1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (16)

Using the homography matrix H (Eq. (16)), the corresponding points between two quadrangles

(Fig. 8) can be expressed by Eq. (9). Suppose that the homography of camera 1 is H1 and that

of camera 2 is H2. Fig. 3 shows the homographic projection from each view to canonical square.

Canonical square can be any square defined by the engineer. Suppose that the pixel position of the

canonical square is (x, y). The corresponding points of camera 1 (x′
1, y

′
1) and camera 2 (x′

2, y
′
2)

can be calculated as follows.

⎛
⎜⎜⎝

x′
1

y′1

⎞
⎟⎟⎠ ∼ H1

⎛
⎜⎜⎝

x

y

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

x′
2

y′2

⎞
⎟⎟⎠ ∼ H2

⎛
⎜⎜⎝

x

y

⎞
⎟⎟⎠ . (17)

Namely, the two points (x′
1, y

′
1) and (x′

2, y
′
2) are corresponded while the point (x, y) acted as a191

mediator.192

3 Experiment193

3.1 Experimental setup194

As is shown in Fig. 9, the target object is surrounded by white material. This white environment195

acts as a light source, and illuminates the target object from every direction. Cheap foaming196

polystyrene is used in our experiment, and it is located not strictly but roughly. Once we set this197

white enclosure, we do not need to move it like photometric stereo, which needs to move the light198
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Fig 9 Experimental environment.

Table 1 Specification of the camera.

Manufacturer FluxData Inc., NY
Product name FD-1665P
Sensor Sony ICX414
Resolution 659 × 494
Pixel size 9.9μm× 9.9μm
Configuration 0, 45, 90 linear polarizer
Frame rate 74fps
Interface IEEE-1394b

sources. The white board is illuminated by ordinary room light which is set in ordinary room.199

Often, the white board is unnecessary, since wall, floor, and ceil act as an illuminator.18
200

The camera we used is shown in Fig. 10 and Table 1. Since we have only one camera (because201

polarization camera is expensive), we rotated the target object instead of rotating the camera. Note202

that, observing a target object with multiple cameras and observing the target object rotated in203

multiple angles with a single camera are mathematically same.204
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Fig 10 Polarization camera.

Fig 11 Pseudo color representation of an ideal sphere: (a) Azimuth angle and (b) surface normal.

3.2 Pseudo color representation of the result205

Following sections show some results of our method. For visualization, the azimuth angle and the206

surface normal are represented by pseudo-color. Fig. 11 (a) and Fig. 11 (b) show the pseudo color207

representation of the azimuth angle and the surface normal of ideal hemishpere, respectively.208
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3.3 Result of ellipsoid209

The target object is shown in Fig. 12. We generated the object using 3D printer, so that we can210

compare the result with the ground truth, which is the digital data input to the 3D printer. The211

size of the square is 10 [cm] × 10 [cm], the diameter of long axis of the ellipse is 7.5 [cm], the212

diameter of short axis of the ellipse is 2.5 [cm], and the maximum deepness of the concave part is213

0.625 [cm]. The unique characteristic of our method is that we can estimate a shape of cracks. First214

of all, we evaluate the performance of the proposed method. In order to guarantee the statistical215

reliability, we need to estimate the surface normal with wide variety and wide area. That is why216

we first measure the concave ellipsoid.217

We took one image each from 15 different direction (Fig. 13). Pseudo-color representation of218

surface normal of our method is shown in Fig. 14, and that of ground truth is shown in Fig. 15.219

Note that our method successfully estimated the shape which is almost the same as true shape. The220

estimated shape is shown in Fig. 16 and Fig. 18 (c), while ground truth is shown in Fig. 17 and221

Fig. 18 (a). The error is calculated as the angle between two surface normals of the estimated and222

the ground truth. Error is shown in Fig. 19 (b), where the average error was 4.49 [deg].223

3.4 Comparison to photometric stereo224

In order to prove the effectiveness of our method, we compare our method with the result of225

photometric stereo.30
226

Photometric stereo from 15 lights is applied to the object shown in Fig. 12, and the input227

images are shown in Fig. 20. Surface normal of the photometric stereo is shown in Fig. 21, and228

the estimated shape is shown in Fig. 22 and Fig. 18 (b). Photometric stereo assumes Lambertian229

reflection though the actual reflection is specular reflection, thus, the shape is distorted. The error230
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Fig 12 Target object [ellipsoid].

Fig 13 Input image [ellipsoid].
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Fig 14 Estimated surface normal [ellipsoid].

Fig 15 Ground truth of surface normal [ellipsoid].
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Fig 16 Estimated shape [ellipsoid].

Fig 17 Ground truth of shape [ellipsoid].
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Fig 18 Intersection shape [ellipsoid]: (a) Ground truth, (b) photometric stereo, and (c) proposed method.

Fig 19 Estimation error [ellipsoid]: (a) Photometric stereo and (b) proposed method.
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Fig 20 Input image of photometric stereo [ellipsoid].

is shown in Fig. 19 (a), and the average error was 42.3 [deg]. Since our error is 4.49 [deg], the231

performance of our method is better.232

3.5 Result of convex object233

Our method can not only be applied to concave objects but also be applied to convex objects.234

In order to prove the wide applicability of our method, we measure a convex object. The target235

object is shown in Fig. 23. The input images of our method is shown in Fig. 24, while those of236

photometric stereo is shown in Fig. 25. The surface normal of the ground truth, the photometric237

stereo, and the proposed method is shown in Fig. 26, Fig. 27, and Fig. 28. The shape of the ground238

truth, the photometric stereo, and the proposed method is shown in Fig. 29, Fig. 30, and Fig. 31.239

The cross section of the shape of the ground truth, the photometric stereo, and the proposed method240

is shown in Fig. 32 (a), Fig. 32 (b), and Fig. 32 (c). The error of the photometric stereo and the241

proposed method is shown in Fig. 33 (a) and Fig. 33 (b). The average error of the photometric242

stereo was 47.0 [deg] while that of the proposed method was 12.9 [deg].243
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Fig 21 Surface normal of photometric stereo [ellipsoid].

Fig 22 Shape of photometric stereo [ellipsoid].
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Fig 23 Photograph of target object [convex].

Fig 24 Input data of our method [convex].
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Fig 25 Input images of photometric stereo [convex].

Fig 26 Surface normal of ground truth [convex].
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Fig 27 Surface normal of photometric stereo [convex].

Fig 28 Surface normal of proposed method [convex].
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Fig 29 Shape of ground truth [convex].

Fig 30 Shape of photometric stereo [convex].
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Fig 31 Shape of proposed method [convex].

Fig 32 Intersection shape [convex]: (a) Ground truth, (b) photometric stereo, and (c) proposed method.
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Fig 33 Estimation error [convex]: (a) Photometric stereo and (b) proposed method.

3.6 Result of stripes244

In order to evaluate the performance of our method depending on the width of cracks, three differ-245

ent concave shapes with different width are measured. Fig. 34 shows the target object and Fig. 35246

shows the input images. Also, 15 images are taken, one for each direction. Surface normal of our247

method is shown in Fig. 36, and that of ground truth is shown in Fig. 37. The estimated shape is248

shown in Fig. 38 and Fig. 40 (b), while ground truth is shown in Fig. 39 and Fig. 40 (a). The error249

map is shown in Fig. 41, and the average error was 7.18 [deg].250

3.7 Result of worm251

In order to simulate an acutal situation, we applied our method to a cracks which is not shaped in252

a straight line. Fig. 42 shows the target object, Fig. 43 shows the input images, Fig. 44 shows the253

estimated surface normal, and Fig. 45 shows the estimated shape.254
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Fig 34 Target object [stripe].

Fig 35 Input images [stripe].
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Fig 36 Estimated surface normal [stripe].

Fig 37 Ground truth of surface normal [stripe].
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Fig 38 Estimated shape [stripe].

Fig 39 Ground truth of shape [stripe].

Fig 40 Intersection shape [stripe]: (a) Ground truth and (b) estimated shape.
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Fig 41 Error of our method [stripe].

Fig 42 Target object [worm].
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Fig 43 Input images [worm].

Fig 44 Estimated surface normal [worm].
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Fig 45 Estimated shape [worm].

3.8 Discussion255

As is shown in Fig. 41, the narrower the concave part is, the worse the result is. This is because256

the light is not illuminated satisfactorilly to the narrow concave part. In addition, interreflection257

becomes strong at narrow concave part.258

4 Conclusion259

We propose a shape estimation method from polarization images obtained from multiple view-260

points. The proposed method computes the surface normal using SVD to minimize the least-261

squared error. It can estimate the shapes of concave part of planar objects which is black and has262

high specularity. It is usually difficult to estimate the shape of planar object with small details,263

however, our algorithm fully utilizes the property that the target object is almost planar. What264

is interesting in our method is that even if we assume that the object is planar, the shape of the265

concave part is also successfully determined.266

The experiments show that our method can estimate the shape of the crack. This property267

demonstrates that our method is useful for investigation of product inspection in factory, damage268
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inspection in architecture, age estimation from skin wrinkle, and so on. For example, factories want269

to know the reason of the defect of the product since they want to fix the problem and decrease the270

defects. In order to analyze the reason, the shape of the defects is necessary, and our method is271

useful for this purpose.272

The disadvantage of our method is that the shape where the light has not reached cannot be273

estimated. However, this disadvantage does not only apply to our method but also apply to any274

methods in image processing field since “image” cannot be observed if the scene is not illuminated.275

Our future work is to develop a measurement system which illuminates the target object from any276

directions.277
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