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A lossy compression algorithm for binary redundant memoryless sources is presented. The proposed scheme is based
on sparse graph codes. By introducing a nonlinear function, redundant memoryless sequences can be compressed. We
propose a linear complexity compressor based on the extended belief propagation, into which an inertia term is
heuristically introduced, and show that it has near-optimal performance for moderate block lengths.
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Channel coding can be considered as a dual problem of
lossy source coding.1,2) Recent research on error correcting
codes and lossy source coding has shown that the statistical
mechanical approach can be used to explain such problems.3)

Lossy compression for memoryless sources has been widely
investigated since Matsunaga and Yamamoto showed that it
is possible to attain the rate-distortion bound asymptotically
using low-density parity-check (LDPC) codes.4) The upper5)

and lower6,7) bounds on its rate-distortion performance of
low-density generator-matrix (LDGM) codes for lossy
compression with a given check degree are evaluated. Some
other lossy compression schemes that have asymptotic
optimality have been proposed so far.8–19)

Efficient compressors, on the other hand, are still in the
stage of development. Some efficient encoding algorithms,
which have near optimal performance, have been proposed,
e.g., the nested binary linear codes,20) the inertia-term-
introduced belief propagation,10,21) the survey-propagation-
based message passing algorithm,22) the bit-flipping-based
algorithm,14) the exhaustive search of small words into what
an original message is divided,23) the linear-programming-
based algorithm,24) and the Markov–Chain Monte–Carlo
(MCMC)-based algorithm.25)

For redundant memoryless sources, some low complexity
compressors, e.g., the near-linear complexity compressor
based on the exhaustive search of small words,23) the
quadratic complexity compressor based on the bit-flipping-
based algorithm,14) and the MCMC-based compressor25)

whose complexity is independent of the sequence length,
have been proposed so far. One of other approaches to obtain
near-linear complexity compressors for redundant sources
is to apply the inertia-term-introduced belief propagation.
Hosaka and Kabashima have proposed an algorithm for
redundant sources, whose complexity is OðN2Þ.10) In this
study, we propose a linear complexity lossy compression
algorithm based on an inertia-term-introduced belief propa-
gation by using a nonlinear function and a sparse matrix
such as low-density generator matrix (LDGM) codes for
binary redundant memoryless sources. This proposed
algorithm can be regarded as the perceptron-based one10)

whose edges are extremely deleted to have a finite
connectivity and has asymptotic optimality under some
constraints. We also show that it has near optimal
performance for moderate block lengths.

Let us first provide the concepts of the rate-distortion
theory1) and some notations. Let x be a discrete random
variable with an alphabet X . A source alphabet, a codeword
alphabet, and a reproduced alphabet are X , S, and X̂ ,
respectively. The compressor F encodes the M bit source
sequence x ¼ tðx1; . . . ; xMÞ 2 XM into the N ð< MÞ bit
codeword � ¼ tð�1; . . . ; �NÞ ¼ FðxÞ 2 SN . The decompressor
G generates the M bit reproduced sequence x̂ ¼
tðx̂1; . . . ; x̂MÞ ¼ Gð�Þ 2 X̂M from the codeword �. The code
rate then becomes R ¼ N=Mð< 1Þ.

A distortion measure is a map d : X � X̂ ! ½0;1Þ. A
distortion between the sequences x ¼ tðx1; . . . ; xMÞ 2 XM

and x̂ ¼ tðx̂1; . . . ; x̂MÞ 2 X̂M is measured by the averaged
single-letter distortion as dðx; x̂Þ ¼ ð1=MÞPM

k¼1 dðxk; x̂kÞ. A
rate distortion pair ðR;DÞ is said to be achievable if there
exists a sequence of rate distortion codes ðF ;GÞ with
Ex½dðx; x̂Þ� � D in the limit M ! 1. The rate distortion
function RðDÞ is the infimum of the rate R such that ðR;DÞ
is in the rate distortion region of the source for a given
distortion D.

We hereafter consider the binary alphabets X ¼ S ¼
X̂ ¼ f�1; 1g and a redundant binary memoryless source
whose distribution is given by �ðX ¼ 1Þ ¼ 1� p; �ðX ¼
�1Þ ¼ p. The parameter p is a source bias. We use the
Hamming distortion

dðx; x̂Þ ¼ 0; if x ¼ x̂,

1; if x 6¼ x̂,

�
ð1Þ

as a distortion measure. The rate-distortion function of a
Bernoulli(p) i.i.d. source then becomes RðDÞ ¼ h2ð pÞ �
h2ðDÞ, where h2 denotes the binary entropy function which
is defined by h2ðxÞ ¼ �x log2ðxÞ � ð1� xÞ log2ð1� xÞ.

Using a parameter w ¼ ðw1; w2Þ 2 ðNnf0gÞ2, we first
introduce the nonlinear function g : N ! f�1; 1g defined as

gwðzÞ ¼ gðw1;w2ÞðzÞ ¼
1 if w1 < jzj < w2

�1 otherwise

�
; ð2Þ

where the operator tA denotes the transpose of A. For a
vector, this function acts componentwise. We here consider
the following decompressor:

Gð�Þ ¼ gwðA�Þ; ð3Þ
where A ¼ ða�iÞ 2 f�1; 0; 1gM�N denotes a sparse regular
matrix whose row weight, i.e., the number of nonzero
elements, is C. Each nonzero element of the sparse matrix A
takes �1 with equiprobability. The function gwðzÞ is adjusted�E-mail: mimura@hiroshima-cu.ac.jp
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so that the bias of the reproduced sequence is close to that of
the original message as much as possible. More complex
functions can be considered as the function gwðzÞ. As will be
discussed later, the complexity of our proposed algorithm is
OðNÞ but it is proportional to 2C. So a small C is preferable;
therefore, we here consider a simple nonlinear function that
can easily be adjusted.

The compressor is then defined by

FðxÞ ¼ argmin
s2f�1;1gN

dðx;GðsÞÞ: ð4Þ

This compressor is identical to FðxÞ ¼ argmaxs2f�1;1gN
pðs; xÞ, which is the maximization of the following
distribution

pðs; xÞ , 1

Zð�Þ e
��Mdðs;xÞ ¼ 1

Zð�Þ
YM
k¼1

e��Gkðs;xkÞ; ð5Þ

where Gkðs; xkÞ ¼ ð1=2Þð1� xkx̂kÞ, x̂k ¼ gwð
P

i2LðkÞ akisiÞ
and LðkÞ ¼ fijaki 6¼ 0g with the parameter � > 0. Here,
Zð�Þ denotes an normalization constant of pðs; xÞ, which is
defined by Zð�Þ ¼P

s e
��Mdðx;GðsÞÞ. The function Gkðs; xkÞ

represents a distortion with respect to the kth bit.
We here consider a large row weight limit, which is a case

where C ¼ N holds, to allows us to infer compression
performance. In this limit our scheme can be regarded as the
perceptron-based code.9,10,17,18,26) When w2 > N, these are
equivalent to each other. To make the parameters w1 and
w2 be of order unity, we introduce a constant into the
decompressor as Gð�Þ ¼ gwðN�1=2A�Þ. The achievable dis-
tortion D is evaluated as D ¼ lim�!1 @½�f ð�Þ�=@� via the
free energy density f ð�Þ ¼ ð��MÞ�1

EA;x½lnZð�Þ�, where E

denotes an expectation operator.
Applying the so called replica method, the free energy

density can be evaluated as f ð�Þ ¼ ���1ð p lnfe�� þ
ð1 � e��ÞKwg þ ð1 � pÞ ln fe�� þ ð1 � e��Þð1�KwÞg þ
R ln 2Þ within the replica symmetric treatment, where
Kw ¼ R

fz2RjgwðzÞ¼�1gð2�Þ�1=2e�z2=2 dz. The parameter Kw is
identical to the expectation value Ez½gwðzÞ ¼ �1� with a
random variable z which obeys the standard normal
distribution Nð0; 1Þ, which originates from the distribution
of each element of N�1=2A�. It can be considered that the
compression performance is given using the distribution of
N�1=2A� and gw in this scheme.

The entropy density of pðs; xÞ is then obtained as sð�Þ ¼
�ð@½�f ð�Þ�=@�� f Þ. The entropy density sð�Þ must be non-
negative owing to the definition of pðs; xÞ; however it takes
negative values in the large � region. We therefore evaluate
the achievable distortion D at �c which gives a zero entropy
density [sð�cÞ ¼ 0], so this analysis is equivalent to the
Krauth-Mézard approach which is a kind of one-step replica
symmetric breaking (RSB) treatment.27)

Using the zero-entropy-density criterion, minimizing the
achievable distortion D ¼ lim�!�c @½�f ð�Þ�=@� with respect
to w, one can obtain RðDÞ ¼ h2ð pÞ � h2ðDÞ, which is
identical to the rate-distortion function. From these two
conditions, i.e., the zero entropy density and the minimiza-
tion of the achievable distortion, the following relationships
are obtained:

e�� ¼ D

1�D
; ð6Þ

Kw ¼ p�D

1� 2D
: ð7Þ

The definition of the compressor means that it has
exponential complexity. We then utilize a suboptimal
algorithm based on message passing to construct the
compressor.21) Instead of the maximization of pðs; xÞ we
use a symbol MAP encoding scheme, which is maximization
of marginal distribution,

�i ¼ argmax
si2f�1;1g

X
snsi2f�1;1gN�1

pðs; xÞ: ð8Þ

To evaluate the marginal distribution we apply the belief
propagation. Since Gð�sÞ ¼ GðsÞ holds for any s, the
expectation value of si becomes zero. To avoid this
uncertainty we heuristically introduce an inertia term as a
prior, which gives the following inertia-term-introduced
belief propagation:21)

�̂tkiðsiÞ ¼
X

si02LðkÞni

e��Gkðs;xkÞ
Y

i02LðkÞni
�ti0kðsi0 Þ; ð9Þ

�tþ1
ik ðsiÞ ¼ �ikr

t
iðsiÞ

Y
k02MðiÞnk

�̂tk0iðsiÞ: ð10Þ

A pseudo marginal can be evaluated as

qtþ1
i ðsiÞ ¼ �ir

t
iðsiÞ

Y
k2MðiÞ

�̂tkiðsiÞ; ð11Þ

where �ik and �i denote normalization constants andMðiÞ ¼
fkjaki 6¼ 0 8�g. Here, the function rtiðsiÞ is an introduced
prior as the inertia term and the superscript t represents an
iteration step. We here consider that si is binary, so we can
safely put �tikðsiÞ ¼ ð1=2Þð1þ mikðtÞsiÞ, �̂tkiðsiÞ ¼ ð1=2Þð1þ
m̂ikðtÞsiÞ, qtiðsiÞ ¼ ð1=2Þð1þ miðtÞsiÞ. We here define a prior
as rtiðsiÞ ¼ esi tanh

�1½�miðtÞ�, where the parameter � ð0 � � < 1Þ
denotes the amplitude of the inertia term, which is
heuristically chosen. When � ¼ 0 [rtiðsiÞ ¼ 1], the inertia-
term-introduced belief propagation recovers the conven-
tional belief propagation. It should be noted that the
performance does not strongly depend on the detailed shape
of the function, if it is an increasing function. It has not yet
been investigated how the inertia term works in detail so far;
however it is known that the inertia term chooses a single
peak in the calculation of the pseudo marginal.

We calculate the equations of the belief propagation,
which gives

m̂kiðtÞ ¼
akixk

�
tanh

�

2

�
VkiðtÞ

1þ xk

�
tanh

�

2

�
UkiðtÞ

; ð12Þ

mikðt þ 1Þ ¼ tanh

 X
k02MðiÞnk

tanh�1 m̂k0iðtÞ

þ tanh�1 �miðtÞ
!
; ð13Þ

miðt þ 1Þ ¼ tanh

 X
k02MðiÞ

tanh�1 m̂kiðtÞ

þ tanh�1 �miðtÞ
!
; ð14Þ

K. MIMURAJ. Phys. Soc. Jpn. 80 (2011) 093801 LETTERS

093801-2 #2011 The Physical Society of Japan



where

UkiðtÞ ¼
X

si02LðkÞni

uw
X

i02LðkÞni
aki0si0

 !

�
Y

i02LðkÞni

1þ mi0kðtÞsi0
2

; ð15Þ

VkiðtÞ ¼
X

si02LðkÞni

vw
X

i02LðkÞni
aki0si0

 !

�
Y

i02LðkÞni

1þ mi0kðtÞsi0
2

; ð16Þ

uwðxÞ ¼ Ið�w2 < x < �w1Þ þ Iðw1 < x < w2Þ
� Iðx < �w2Þ � Iðw2 < xÞ
� Ið�w1 < x < w1Þ; ð17Þ

vwðxÞ ¼ Iðx ¼ �w2Þ � Iðx ¼ �w1Þ
þ Iðx ¼ w1Þ � Iðx ¼ w2Þ; ð18Þ

and IðPÞ denotes an indicator function that takes 1 if the
proposition P is true, and 0 otherwise. After tm iterations, the
ith bit of the codeword can be obtained as �i ¼ sgn½miðtmÞ�
using the mean of the pseudo marginal miðtmÞ. To derive
these iterative equations, we use the identity x̂k ¼
uwð

P
i02LðkÞni aki0si0 Þ þ akisi vwð

P
i02LðkÞni aki0si0 Þ, which holds

for any i 2 LðkÞ.
The computational cost of the terms UkiðtÞ and VkiðtÞ is

Oð2CÞ, which depends only on the row weights C, namely, it
is Oð1Þ with respect to N. The complexity of this algorithm
is therefore OðNÞ when the number of iterations tm is fixed.

Utilizing eqs. (6) and (7) which are obtained in the large-
row-weight-limit analysis, we can approximately set all
parameters C, w1, w2, and � of our scheme with finite row
weights except �.

We first consider a setting of the parameter �. Using
eq. (6) and the rate-distortion function, we set � as
� ¼ �cð p; RÞ for the given the source bias p and the code
rate R, where �cð p; RÞ ¼ lnð½h�1

2 ðh2ð pÞ � RÞ��1 � 1Þ. Here,
h�1
2 denotes the inverse function of the binary entropy

function.
We next consider a setting of the parameters C, w1, and

w2. Each element of the vector As is the summation of
C Bernoulli random variables 1� 2Bernoullið0:5Þ, where
s 2 f�1; 1gN denotes a candidate of a codeword. This is a
similar situation to the row weight limit. To keep the row
weight finite, we restrict the row weight as C � Cmax. Using
eq. (7) and the rate-distortion function, we set ðC;w1; w2Þ
as ðC;w1; w2Þ ¼ argminðC0;w0

1
;w0

2
Þ2DðCmaxÞ jK̂ðC0; w0

1; w
0
2Þ �

Kð p;RÞj, where K̂ðC;w1;w2Þ ¼
P

n2f0;...;Cg:gwðC�2nÞ¼�12
�C C

n

� �
,

Kð p; RÞ ¼½ p� h�1
2 ðh2ð pÞ �RÞ�=½1� 2h�1

2 ðh2ð pÞ �RÞ�, and
DðCmaxÞ ¼ fðC;w1; w2Þj2�C�Cmax; 0 < w1 �C�1; w1 <
w2 � Cþ 1g for the given p and R. Note that the parameter
that gives second smallest value might provide better
performance.

Lastly, � is determined by trial and error. In this study, we
choose � only within f0:2; 0:3; 0:4; 0:5g.

The empirical compression performance is shown in
Fig. 1. In this figure, the distortion averaged over 10 runs is
plotted as a function of the code rate R for the source bias
p 2 f0:6; 0:7; 0:8; 0:9g. The length of codewords is fexed at
N ¼ 420, and the length of original sequence is adjusted.
We here choose Cmax ¼ 8 and p > 0:5. In this figure, the

time sharing bound is also shown. The time sharing bound
is given by RðDÞ ¼ ð1�D=pÞh2ð pÞ, which denotes the
compression performance achieved by the time sharing
scheme of a lossless coding [Rð0Þ ¼ h2ð pÞ] and a trivial
encoding that always outputs an all-one vector for any input
[Rð pÞ ¼ 0]. It can be confirmed that the proposed linear
complexity compressor [with OðNÞ complexity] has slightly
better performance than Hosaka’s algorithm [with OðN2Þ
complexity].

We observed a not-so-good performance for the small-p
region that the source bias is less than about 0.2. In this
region minjK̂ðC0; w0

1; w
0
2Þ �Kð p; RÞj is not much smaller

than that of the large-p region. When we compress the
original sequence x of which bias is p < 0:5, we can first flip
it as �x and then compress. The information for determining
whether the sequence flips requires one bit. To reduce
minjK̂ðC0; w0

1; w
0
2Þ �Kð p; RÞj, it might be helpful to intro-

duce more complex nonlinear functions.
In this study, we have proposed a scheme using a

nonlinear function and a sparse matrix, and as well as a
linear complexity message passing compressor based on the
inertia-term-introduced belief propagation. The proposed
method can treat redundant memoryless sources and has
near-optimal compression performance for moderate block
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Fig. 1. Empirical compression performance against the code rate R for

typical source bias p. The proposed algorithm (squares) and Hosaka’s

algorithm (circles) are shown. The length of the orginal sequences is

N ¼ 420, and all the measurements are averaged over 10 runs. The

parameter � is chosen within f0:2; 0:3; 0:4; 0:5g. The row weight C is chosen

within C � 8 (Cmax ¼ 8). Top: p 2 f0:6; 0:8g. Bottom: p 2 f0:7; 0:9g.
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lengths. The adjustment of the column weight distribution of
the sparse matrix might enable us to improve the compres-
sion performance. The analysis of this scheme with finite
row weights is one of our future studies.
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14) A. Gupta and S. Verdú: IEEE Trans. Inf. Theory 55 (2009) 1961.

15) S. Miyake and J. Muramatsu: IEICE Trans. Fundam. Electron.

Commun. Comput. Sci. E91-A (2008) 1488.

16) J. Muramatsu and S. Miyake: Proc. IEEE Int. Symp. Information

Theory (ISIT2008), 2008, p. 424.

17) F. Cousseau, K. Mimura, T. Omori, and M. Okada: Phys. Rev. E 78

(2008) 021124.

18) F. Cousseau, K. Mimura, and M. Okada: Proc. IEEE Int. Symp.

Information Theory (ISIT2008), 2008, p. 509.

19) K. Mimura: J. Phys. A 42 (2009) 135002.

20) T. Wadayama: Proc. 3rd Int. Symp. Turbo Codes and Related Topics,

2003, p. 231.

21) T. Murayama: Phys. Rev. E 69 (2004) 035105(R).

22) M. J. Wainwright and E. Maneva: Proc. IEEE Int. Symp. Information

Theory (ISIT2005), 2005, p. 1493.
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